

SAP PRESS is a joint initiative of SAP and Rheinwerk Publishing. The know-how offered
by SAP specialists combined with the expertise of Rheinwerk Publishing offers the
reader expert books in the field. SAP PRESS features first-hand information and expert
advice, and provides useful skills for professional decision-making.

SAP PRESS offers a variety of books on technical and business-related topics for the SAP
user. For further information, please visit our website: http://www.sap-press.com.

Kiran Bandari
Complete ABAP
2017, 1047 pages, hardcover and e-book
www.sap-press.com/3921

Krishna Kishor Kammaje
SAP Fiori Certification Guide: Development Associate Exam
2018, 474 pages, paperback and e-book
www.sap-press.com/4501

Rudi de Louw
SAP HANA 2.0 Certification Guide: Application Associate Exam (2nd Edition)
2018, 540 pages, paperback and e-book
www.sap-press.com/4567

Paul Hardy
ABAP to the Future (2nd edition)
2016, 801 pages, hardcover and e-book
www.sap-press.com/4161

http://www.sap-press.com
http://www.sap-press.com/3921
http://www.sap-press.com/4501
http://www.sap-press.com/4567
http://www.sap-press.com/4161

Puneet Asthana, David Haslam

ABAP® 7.5 Certification Guide

Development Associate Exam

Dear Reader,

Have you ever had a nightmare in which you were taking a test? Did you sleep in, forget
to study, or did you miss it completely?

Well, short of lucid dreaming, this ABAP certification guide has everything you need to
keep your nightmares at bay. Get the practice you need to ace the test with real-world
applications for ABAP topics, key concept refreshers, and in-depth questions and
answers. ABAP gurus Puneet Asthana and David Haslam have updated this edition to
ensure you’re covered for SAP NetWeaver 7.5.

Working with this team has been a dream, and their passion and drive to provide you
the most relevant and deliberate coverage means that this book is your ticket to ABAP
certification success.

What did you think about ABAP 7.5 Certification Guide: Development Associate Exam?
Your comments and suggestions are the most useful tools to help us make our books
the best they can be. Please feel free to contact me and share any praise or criticism you
may have.

Thank you for purchasing a book from SAP PRESS!

Will Jobst
Editor, SAP PRESS

willj@rheinwerk-publishing.com
www.sap-press.com
Rheinwerk Publishing • Boston, MA

mailto:willj%40rheinwerk-publishing.com?subject=
http://www.sap-press.com

Notes on Usage

This e-book is protected by copyright. By purchasing this e-book, you have agreed to
accept and adhere to the copyrights. You are entitled to use this e-book for personal
purposes. You may print and copy it, too, but also only for personal use. Sharing an
electronic or printed copy with others, however, is not permitted, neither as a whole
nor in parts. Of course, making them available on the Internet or in a company network
is illegal as well.

For detailed and legally binding usage conditions, please refer to the section
Legal Notes.

This e-book copy contains a digital watermark, a signature that indicates which person
may use this copy:

Imprint

This e-book is a publication many contributed to, specifically:

Editor Will Jobst
Acquisitions Editor Hareem Shafi
Copyeditor Kezia Endsley
Cover Design Graham Geary
Photo Credit Shutterstock.com/732773419/© Natinka
Production E-Book Graham Geary
Typesetting E-Book SatzPro, Krefeld (Germany)

We hope that you liked this e-book. Please share your feedback with us and read the
Service Pages to find out how to contact us.

ISBN 978-1-4932-1685-7 (print)
ISBN 978-1-4932-1686-4 (e-book)
ISBN 978-1-4932-1687-1 (print and e-book)

© 2018 by Rheinwerk Publishing, Inc., Boston (MA)
4th edition 2018

The Library of Congress has cataloged the printed edition as follows:
Names: Asthana, Puneet, author. | Haslam, David, 1957- author.
Title: ABAP 7.5 certification guide : development associate exam / Puneet
 Asthana, David Haslam.
Description: Bonn ; Boston : Rheinwerk Publishing, [2018] | Includes index.
Identifiers: LCCN 2018003929 (print) | LCCN 2018006523 (ebook) | ISBN
 9781493216864 (ebook) | ISBN 9781493216857 (alk. paper)
Subjects: LCSH: SAP NetWeaver--Examinations--Study guides. | Web site
 development--Examinations--Study guides. | ABAP/4 (Computer program
 language)--Examinations--Study guides.
Classification: LCC TK5105.8885.S24 (ebook) | LCC TK5105.8885.S24 A882 2018
 (print) | DDC 006.7/6--dc23
LC record available at https://lccn.loc.gov/2018003929

7

Contents

Acknowledgments .. 17

Preface .. 19

PART I General Introduction

1 ABAP Development Certification Track: Overview 29

Certification Exam Scoring Changes ... 30

Certification Levels ... 30

Advanced Certification Levels ... 32

Becoming an SAP Certified ABAP Development Associate: Overview 33

Associate Examination Specifics .. 33

Competency Areas .. 34

2 Courses and Experience 37

Training Courses for ABAP ... 38

Sources of Information ... 39

Strategic Understanding .. 39

SAP Examination Strategies ... 41

General Examination Strategies ... 42

PART II Exam Preparation

3 SAP NetWeaver: Overview 47

Objectives of This Portion of the Test .. 48

Key Concepts Refresher .. 48

Contents8
SAP Products in a Nutshell ... 49

Product Evolution .. 50

SAP NetWeaver Architecture .. 56

Kernel and Administration Services ... 58

Software-Oriented View ... 59

User-Oriented View .. 62

Structure of a Work Process .. 64

Important Terminology .. 68

Practice Questions .. 69

Practice Question Answers and Explanations .. 71

Takeaway .. 73

Refresher .. 73

Tips ... 74

4 ABAP Workbench Usage 75

Objectives of this Portion of the Test ... 76

Key Concepts Refresher .. 77

ABAP Workbench .. 77

Repository Browser ... 82

Repository Information System ... 84

Workbench Settings ... 86

ABAP Editor and Workbench Settings .. 87

ABAP Workbench Tools in Detail ... 91

Enhancement Information System ... 93

Packages and Their Attributes .. 95

Transport Organizer ... 99

Practice Questions .. 102

Practice Question Answers and Explanations .. 105

Takeaway .. 107

Refresher .. 107

Contents 9
5 ABAP Debugger Program Usage 109

Objectives of this Portion of the Test ... 111

Key Concepts Refresher .. 111

New and Classic Debugger .. 112

New Debugger Tools and UI .. 116

Assertions and Breakpoints ... 125

New Debugger Customization and Settings ... 126

Important Terminology .. 132

Practice Questions ... 133

Practice Question Answers and Explanations .. 136

Takeaway .. 138

Refresher .. 139

Tips ... 139

6 ABAP Types and Data Objects 141

Objectives of This Portion of the Test .. 142

Key Concepts Refresher .. 143

ABAP Types and Data Objects ... 143

ABAP Data Types ... 151

Local Data Types .. 155

Global Data Types ... 158

Data Object Visibility ... 160

Important Terminology .. 160

Practice Questions ... 161

Practice Question Answers and Explanations .. 164

Takeaway .. 166

Refresher .. 166

Contents10
7 Internal Table Definition and Use 169

Objectives of this Portion of the Test ... 170

Key Concepts Refresher .. 171

Internal Table Definition and Use ... 171

Defining ABAP Internal Tables .. 175

Using ABAP Internal Tables ... 184

Important Terminology .. 201

Practice Questions .. 201

Practice Question Answers and Explanations .. 204

Takeaway .. 206

Refresher .. 207

8 SQL Statements Including Update Strategies 209

Objectives of This Portion of the Test .. 211

Key Concepts Refresher .. 211

Data Modeling ... 211

Data Retrieval ... 214

Arrangement of SELECT and FROM Clauses .. 217

Unions ... 217

Performance of Database Access .. 218

Logical Units of Work ... 221

Enqueue and Dequeue .. 223

Inline Updates .. 228

Perform on Commit ... 229

Update Modules .. 229

Open SQL .. 235

SQL Parser .. 236

SQL Expressions ... 237

SQL Expressions Expanded .. 238

SQL Functions Expanded .. 238

Access to CDS Entities ... 241

Practice Questions .. 241

Contents 11
Practice Question Answers and Explanations .. 246

Takeaway .. 249

Refresher .. 250

Tips ... 250

9 Basic ABAP Programs and Interface Creation 251

Objectives of this Portion of the Test ... 253

Key Concepts Refresher .. 253

Organizing Development ... 254

ABAP Programming Overview .. 255

ABAP Event Blocks ... 261

Basic ABAP Statements ... 266

ABAP Subroutine ... 269

ABAP Function Module .. 270

ABAP Classes and Methods ... 274

ABAP Selection Screen ... 277

Authorization Checks .. 279

ABAP Dynpros ... 281

Dialog Messages .. 283

Important Terminology .. 289

Practice Questions ... 291

Practice Question Answers and Explanations .. 296

Takeaway .. 299

Refresher .. 300

Tips ... 301

10 ABAP Dictionary 303

Objectives of This Portion of the Test .. 304

Key Concepts Refresher .. 305

Overview .. 305

Contents12
Basic and Complex Data Types .. 307

Transparent Tables ... 320

Global Temporary Table ... 326

Replacement Objects ... 327

Search Helps ... 328

Append Search Helps ... 332

Lock Objects .. 332

View Types and Maintenance ... 335

Important Terminology .. 338

Practice Questions .. 338

Practice Question Answers and Explanations .. 342

Takeaway .. 344

Refresher .. 344

11 Unicode 347

Objectives of This Portion of the Test .. 349

Key Concepts Refresher .. 350

Unicode Compliance .. 350

Unicode Tools ... 351

Important Terminology .. 362

Practice Questions .. 362

Practice Question Answers and Explanations .. 365

Takeaway .. 366

Refresher .. 366

Tips ... 367

12 Classical Screens 369

Objectives of this Portion of the Test ... 371

Key Concepts Refresher .. 371

Contents 13
Screen Design ... 372

GUI Status and Title Design ... 391

Table Control Programming .. 400

Important Terminology .. 408

Practice Questions ... 408

Practice Question Answers and Explanations .. 411

Takeaway .. 413

Refresher .. 413

13 Selection Screens 415

Objectives of this Portion of the Test ... 416

Key Concepts Refresher .. 416

Selection Screens ... 417

Selection Screen Design .. 417

Important Terminology .. 433

Practice Questions ... 434

Practice Question Answers and Explanations .. 436

Takeaway .. 438

Refresher .. 438

14 ABAP Object-Oriented Programming 439

Objectives of this Portion of the Test ... 441

Key Concepts Refresher .. 441

Object-Oriented Programming Concepts ... 441

ABAP Objects .. 443

ABAP Class ... 443

Objects .. 451

Attributes ... 451

Methods ... 453

Contents14
Events .. 463

Practice Questions .. 467

Practice Question Answers and Explanations .. 470

Takeaway .. 472

Refresher .. 473

15 ALV Grid Control 475

Objectives of this Portion of the Test ... 476

Key Concepts Refresher .. 477

Overview of ALV Programming .. 477

ALV Grid Programming (CL_GUI_ALV_GRID) .. 478

ALV Object Model .. 488

Important Terminology .. 498

Practice Questions .. 500

Practice Question Answers and Explanations .. 503

Takeaway .. 504

Refresher .. 504

Tips ... 505

16 User Interfaces (Web Dynpro) 507

Objectives of this Portion of the Test ... 508

Key Concepts Refresher .. 509

Web Dynpro Design ... 509

Controllers ... 514

Contexts ... 516

Events .. 517

Web Dynpro Application .. 518

Graphical Elements .. 519

Important Terminology .. 525

Contents 15
Practice Questions ... 526

Practice Question Answers and Explanations .. 530

Takeaway .. 531

Refresher .. 531

Tips ... 532

17 Class Identification Analysis and Design 533

Objectives of This Portion of the Test .. 534

Key Concepts Refresher .. 535

Functional Methods ... 535

Inheritance .. 540

Interfaces ... 546

Constructor Expressions ... 548

Class Identification ... 549

Important Terminology .. 551

Practice Questions ... 552

Practice Question Answers and Explanations .. 556

Takeaway .. 558

Refresher .. 558

Tips ... 558

18 Enhancements and Modifications 559

Objectives of this Portion of the Test ... 560

Key Concepts Refresher .. 561

Enhancing SAP Applications .. 561

Enhancement Techniques .. 562

Enhancement Framework .. 588

Modification ... 591

Practice Questions ... 593

Contents16
Practice Question Answers and Explanations .. 596

Takeaway .. 598

Refresher .. 599

19 Table Relationships 601

Objectives of this Portion of the Test ... 602

Key Concepts Refresher .. 603

Table Relationships .. 603

Value Help ... 610

Practice Questions .. 615

Practice Question Answers and Explanations .. 618

Takeaway .. 620

Refresher .. 620

Tips ... 620

The Authors ... 623

Index .. 625

Service Pages ...  I
Legal Notes ...  II

17
 Acknowledgments

We wrote this book primarily as a way of teaching. We both recognize that while

your experience grows with every project, few developers take the time to revisit

subjects they have already mastered. One of us went through his original training

with the “brand-new” release 2.1F of SAP R/3 back in the last millennium. We know

that learning new techniques and new abilities can be difficult.

SAP used to offer delta courses to identify the differences between releases, but

these appear to have fallen out of favor. Instead, the material is incorporated into

the class material, and those who took the class prior to the change are no wiser to

it. The only place for you to obtain this information is the release notes in the doc-

umentation or through word of mouth. As the abilities of ABAP continue to

expand, and more capabilities are added, it is very easy to become accustomed to

doing things the same way even if there are better ways of doing it.

Even the terminology changes, sometimes faster than the capabilities. We know

this because there were many discussions from our first chapter to our last about

the correct phrase or name for something.

So, our goal for this book is twofold. The primary effort was spent on providing

you, the developer, with the information we believe is necessary to successfully

become an SAP Certified Development Associate—ABAP with SAP NetWeaver

7.50. Our secondary goal is to identify the best techniques and recommendations

from SAP. This is beneficial to you because the certification examinations become

more focused on the best way of performing a task.

This book took much more effort than either of us thought it would be. Fortu-

nately, we had help.

We would like to acknowledge Christine Arundell and SAP Education for their

invaluable assistance. Her notes regarding the proper way of explaining a tech-

nique or acting as a technical advisor were very much appreciated. Thank you for

your time and effort.

Acknowledgments18
We would also like to acknowledge Stefan Proksch, our senior editor at SAP PRESS.

He led us through this very unfamiliar world of publishing, guiding us through the

process. As our guide through this world, he kept us focused on the task at hand.

His encouragement and words of praise were much appreciated. As with program

development, time spent up front designing simplifies the end tasks and provides

a much-needed target. Thank you for your assistance.

The Authors

I would like to thank my dear wife, Anita, for her unflinching love, support, and

inspiration. Though taken to her wits’ end with this seemingly never-ending book

project, she not only managed our family single-handedly for the past several

months, but also chose to smile and encouraged me to fulfill my dream of writing

this book. Thanks to my lovely children, my daughter Amishi and my son Anchit,

for being a constant source of unending happiness and joy, and for their love and

understanding that Daddy couldn’t play with them, as he had to complete this

project. Thanks to my dear parents, who nurtured me and instilled in me a strong

sense of values and principles, and who have profoundly influenced who I have

become. Thanks to my brothers and sisters for providing me a loving and encour-

aging environment during my foundational years. Finally, I would like to thank

my co-author, David Haslam, for the opportunity to work together on this project.

Puneet Asthana

I would like to thank my grandchildren, Roman, London, Jordan, Alexis, Emily,

Trystin, the start of the next generation (great grandchildren) Brooklyn and Tren-

ton, and finally their younger baby uncle Donnie, for their unconditional love and

understanding. The words of encouragement and support from one were most

appreciated; you and I both know who you are. As I watch them grow up and start

new families, I am proud of them and their abilities. More than any other, I would

like to thank my wife, Patti, for understanding my long hours and her support of

the project. She is my foundation, the haven in my life. Without her, I would be

lost. I am forever grateful for meeting her.

David Haslam
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

19
 Preface

The SAP PRESS certification series is designed to provide anyone who is preparing

to take an SAP certified exam with all the review, insight, and practice they need to

pass the exam. The series is written in practical, easy-to-follow language that pro-

vides targeted content that is focused just on what you need to know to success-

fully take your exam.

This book is specifically written for those preparing to take the SAP Certified Devel-

opment Associate—ABAP with SAP NetWeaver 7.50 exam, so if you’ve purchased

this book, you’re obviously interested in learning how to successfully pass the cer-

tification exam. You’ve come to the right place. This book will help you become an

SAP Certified Development Associate in ABAP. It is your first step to propel your

career by setting yourself apart from your peers. The certification exam verifies

your knowledge of the fundamentals of release 7.50 of the SAP NetWeaver Applica-

tion Server ABAP. This includes knowledge obtained from attending SAP training

courses in the ABAP curriculum and project experience. To help prepare you to

pass the exam, we’ll cover the facts and applications of each topic discussed in this

book.

You’ll find all the practical, real-world information you need to get a clear under-

standing of the topics that will be covered on the exam, insightful tips about the

types of questions you’ll encounter, and strategies to use to answer them cor-

rectly. The book is closely aligned with the course syllabus and the exam structure,

so all the information provided is relevant and applicable to what you need to

know to prepare for the SAP Certified Development Associate - ABAP with SAP Net-

Weaver 7.50 exam. We explain the SAP products and features using practical

examples and straightforward language, so you can prepare for the exam and

improve your skills in your day-to-day work as an ABAP developer.

Each book in the series has been structured and designed to highlight what you

really need to know. The chapters begin with a clear list of the learning objectives

for the chapter, such as this example:

Preface20
Techniques You’ll Master:

� How to prepare for the exam

� Understanding the general exam structure

� Practice questions and preparation

From there, you’ll dive into the chapter and get right into the test objective cover-

age. So, let’s look at how the book is structured.

Structure of This Book

Let’s discuss how you can use this book to prepare for the exam. This book is

divided into two sections:

� Part I contains the general introduction to this book and the certification exam-

inations. This section will provide you with an overview of the certification pro-

cess and the benefit to you and to your customer or company. We’ll discuss

both the purpose of this certification examination and provide information on

additional certification examinations that are available beyond this one.

� Part II is a breakdown of the topics covered in the certification examination for

C_TAW12_750, the SAP Certified Development Associate - ABAP with SAP Net-

Weaver 7.50. Each chapter contains a similar structure to assist with under-

standing that portion of the certification examination.

Part II is the core of the book and discusses each exam topic and determines the

key concepts. These key concepts are then explained along with important

information that will provide the context for understanding. Each chapter is

broken down into one or more subtopics, depending on the complexity. Illus-

trations and diagrams are included throughout to ensure that you understand

important concepts.

Throughout the book, we’ve also provided several elements that will help you

access useful information:

� Tips call out useful information about related ideas and provide practical sug-

gestions for how to use a function.

� Notes provide other resources to explore or special tools or services from SAP

that will help you with the topic under discussion. The following boxes are

examples of these elements:

� Warnings indicate possible problems, issues, or pitfalls regarding certain topic

areas.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Preface 21
Tip

SAP’s help portal (http://help.sap.com) and SAP’s Community Network (http://

scn.sap.com) both are useful for more detail on each topic.

Note

The content provided in each chapter and subtopic does not exhaustively cover

everything that appears on the exam. In other words, the certification guide does

not cover every exam question, but rather it acts as a refresher to highlight the

major points for each topic. In addition, it points out areas where further review is

needed.

Warning

Remember to get a full night of sleep before your exam. Sometimes the mental

clarity of eight hours of sleep is more beneficial than a sleepless night of studying.

Each chapter that covers an exam topic is organized in a similar fashion so you can

become familiar with the structure and easily find the information you need.

Here’s an example of a typical chapter structure:

� Introductory bullets

The beginning of each chapter discusses the techniques you must master to be

considered proficient in the topic for the certification examination.

� Topic introduction

This section provides you with a general idea of the topic at hand to frame

future sections. It also includes objectives for the exam topic covered.

� Real-world scenario

This part shows a scenario that provides you with a case where these skills

would be beneficial to you or your company.

� Objectives

This section reviews the material the authors feel provides you with the neces-

sary information to successfully pass this portion of the test.

� Key concepts refresher

This section outlines the major concepts of the chapter. It identifies the tasks

you will need to be able to perform properly to answer the questions on the cer-

tification examination.

http://help.sap.com
http://scn.sap.com
http://scn.sap.com

Preface22
Note

You should pay particular attention to the points raised in the Key Concepts

Refresher section and those from the Objectives section.

� Main part

The next section of the chapter provides the objectives of this section of the

test. This includes identifying major points of this topic that are discussed in the

chapter.

Often, we identify a general weighting SAP uses for this topic. To simplify the

discussion, we have produced a general group of three categories, or ranges

(high, average, and low weighting). You should use this information to assist

you in determining which chapters you should spend your time studying to

maximize your score.

Those chapters that are designated as low have the fewest questions on the cer-

tification examination. Those with a designation of average have an average or

medium number of questions on the certification examination. The chapters

with a high weighting have more questions than the other chapters.

The chapter with the highest weighting contains significantly more questions

on the certification examination than any other. Unsurprisingly, Chapter 9,

which discusses general ABAP program design, has the highest weighting of the

examination.

� Important terminology

Just prior to the practice examination questions, we provide a section to review

important terminology. This may be followed by definitions of various terms

from the chapter.

� Practice questions

The chapter then provides a series of practice questions related to the topic of

the chapter. The questions are structured in a similar way to the actual ques-

tions on the certification examination.

� Practice question answers and explanations

Following the practice exercise are the solutions to the practice exercise ques-

tions. As part of the answer, we discuss why an answer is considered correct or

incorrect.

While some of the questions in the practice test reference actual code, you will

find that in the actual certification examination there is a slightly higher num-

ber of questions related to actual code solving. However, we feel that an under-

standing of actual processes will allow you to identify and correctly solve these
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Preface 23
types of questions. Consequently, we have attempted to explain processes that

occur and what we consider the best way of solving issues. These techniques can

be useful to you in your normal work in addition to passing the examination.

� Takeaway

This section provides a takeaway or reviews the areas you should now under-

stand. The refresher section identifies the key concepts in the chapter. We also

provide some tips related to the chapter.

Note

You should be aware that the practice exercise questions are for self-evaluation

purposes only and do not appear on the actual certification examination. Answer-

ing the practice exercise questions correctly is no guarantee that you will pass the

certification exam.

Glimpse into the Exam Structure

To understand the structure of this certification success guide, it is important to

understand the base structure of the exam. We only touch upon the topic here

because Chapter 1 covers the exam structure in detail.

Two basic elements define the exam structure for the associate and various levels

of certification available. These elements are as follows:

� Competency level

Competency is what you are expected to be able to do at a specific level

described. In simple terms, if you have reached a competency, then you can do

the tasks described by that competency. SAP Education has developed a set of

progressive competency levels. As you become more experienced, your compe-

tencies move in sequence from level A to D. The competencies include:

– Accomplish defined tasks (level A)

– Build proposed solutions (level B)

– Conceptualize complex processes (level C)

– Design integrated strategies (level D)

For example, a simple definition of the level A competency is the ability to

accomplish defined tasks during system implementation. As an associate, you

should be able to carry out defined tasks given to you when little to no ambigu-

ity exists. For level D, you may need to devise a roadmap and recommendation

to a particular solution or issue.

Preface24
� Exam topic

This element is much more familiar. ABAP is a complex programming language

for business applications with many parts. A team of experts devised which top-

ics should be tested in each exam. This allows a target for the test development

and conveniently provides you with a list of focus areas to prepare.

Tip

The next chapter dives into more detail for each level of the exam, including a

topic and competency breakdown. Please reference Chapter 1 for additional infor-

mation.

You should understand the concept of competency and exam topics now. It is

important to understand that they work together. The competency areas are

applied to separate topics in the exam. Likewise, this book is also broken down by

these same topics to set the focus and align content for exam preparation.

The exam topics may overlap between the competency areas in terms of a subject

such as objects, but they are unique in content according to the competency. For

example, activity at level A is considered more of a design element and explores

unique construction of objects. Activity at level B examines a more fundamental

understanding of classes and methods. Thus, it’s possible to discuss operational

solutions for objects in one topic, whereas a separate topic covers more strategic

problems or concepts. This will become evident in the chapter content and prac-

tice questions.

Practice Questions

We want to give you some background on the test questions before you encounter

the first few in the chapters. Just like the exam, each question has a basic structure:

� Question stimulus

The question stimulus varies with the different questions, but its intention is to

present a situation or scenario as context for the question. The stimulus com-

plexity depends on the competency level.

� Actual question

The question comes next and relates to the stimulus. Read the question care-

fully and be sure to consider the details from the stimulus because they can

impact the question.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Preface 25
� Question hint

This is not a formal term, but we call it a hint because it will tell you how many

answers are correct. If only one is correct, normally it will tell you to choose the

correct answer. If more than one is correct, like the actual certification examina-

tion, it will not indicate the correct number of answers.

� Answers

The answers to select from depend on the question type. The following ques-

tion types are possible:

– Multiple response

More than one correct answer is possible.

– Multiple choice

Only a single answer is correct.

– True/false

Only a single answer is correct. These should be minimal, especially as you

experience the more advanced exams.

– Fill in the blank

This type is of question is rarely found on the associate examination but is

found on the professional-level exam. Although capitalization does not mat-

ter, only a limited number of answers are considered valid. You should there-

fore be careful with typing and spelling.

– Sequence/ranking

This type of question will also have a single correct answer. The answers will

provide the same options in different order, and you must select the correct

sequence.

Warning

Media can be presented in a test question as part of the stimulus. For example, a

diagram or a code block can be given, followed by the question based on this

enriched content. If the question does not appear to make sense by itself, you

should look for an exhibit button to display the media.

With this certification success guide, you’ll learn how to approach the content and

key concepts highlighted for each exam topic. In addition, you’ll have the opportu-

nity to practice with sample test questions in each chapter. After answering the

practice questions, you’ll be able to review the explanation of the answer, which

dissects the question by explaining why the answers are correct or incorrect. The

practice questions give you insight into the types of questions you can expect,

Preface26
what the questions look like, and how the answers can relate to the question.

Understanding the composition of the questions and seeing how the questions

and answers work together is just as important as understanding the content. This

book gives you the tools and understanding you need to be successful. Armed with

these skills, you’ll be well on your way to becoming an SAP Certified Development

Associate in ABAP.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

PART I

General Introduction

© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Chapter 1

ABAP Development
Certification Track:
Overview

Techniques You’ll Master:

� Understand the different levels of certification

� Identify the scoring in the exams

� Understand the portion of the certification exam associated

with your skills

� Learn about further specifics of the ABAP Development Certifi-

cation Track

Chapter 1 ABAP Development Certification Track: Overview30
Few credentials in the business world carry the value of an SAP certification. Those

who hold it have honed their skills through rigorous study or direct experience.

They have demonstrated their abilities by passing demanding, process-oriented

exams. Regardless of whether you’re an SAP partner, customer, or user, an SAP cer-

tification can give you a distinct competitive advantage.

SAP Global Education portfolio management enhanced the value of the certifica-

tion community for SAP-certified individuals, helping SAP customers and part-

ners leverage certification as a benchmark for engaging, recruiting, or training

properly skilled SAP resources. The roadmap outlines the required steps to intro-

duce multitiered career-enabling certification tracks and advanced-level certifica-

tions to better address the needs of the markets.

Certification Exam Scoring Changes

To publish more job-task-oriented certification exams, and to provide certifica-

tion at the advanced professional level, SAP has made several important changes

to the test models. First, the test design blueprint is created based on a job-task

analysis that is created and validated with the help of consultants actively

involved in relevant projects.

SAP also changed the exam scoring models for all exams published after Septem-

ber 2007 to a dichotomous scoring model. The dichotomous scoring model scores

multiple-response questions as either correct or incorrect and does not give par-

tial grades for responses. This better reflects the need for SAP customers and part-

ners to know whether a certified individual can perform a task to the complete

satisfaction of all concerned. The consistency in the difficulty level of the exams is

reinforced by thorough standard-setting processes, where the test content is rated

by a panel of subject matter experts to determine the final cut score.

Every question should be answered. Leaving a question blank is equivalent to an

incorrect response. All tests were migrated over to the new dichotomous scoring

model.

Certification Levels

You can now obtain certifications at three levels of expertise—associate, profes-

sional, and master. These certifications can help you validate your skills and

knowledge and gain the expertise and credentials you need to lead your organiza-

tion’s efforts to implement SAP software, mature its technological capabilities,
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Certification Exam Scoring Changes Chapter 1 31
and transform its IT landscape. Figure 1.1 shows the progression of levels relative to

your experience.

Figure 1.1 Certification Levels

� Associate certification

This certification covers the fundamental knowledge requirements for an SAP

consultant, ensuring the successful acquisition of broad SAP solution knowl-

edge and skills. With associate-level certification, you can:

– Gain an externally recognized mark of excellence that clients seek

– Differentiate yourself in a crowded marketplace

– Execute your tasks with confidence and skill

– Access a community of SAP associate-level certified peers

� Professional certification

This advanced certification requires proven project experience, business pro-

cess knowledge, and a more detailed understanding of SAP solutions. With pro-

fessional-level certification, you can:

– Demonstrate both your experience and your expertise through a rigorous

testing process

– Promote a more globally applicable accreditation with higher billable rates

ASSOCIATE

PROFESSIONAL

MASTER

Accomplish defined tasks
to perform, test, and/or

customize functionality …

Build proposed solutions by
researching valid options to

specify and implement…

Conceptualize complex processes
to blueprint, modify, and optimize

integrated scenarios…

Design integrated strategies to
compose, develop, and roadmap

solutions and architecture…

Chapter 1 ABAP Development Certification Track: Overview32
– Lead and execute tasks and engagements

– Access a community of SAP professional-level certified peers

� Master certification

This certification involves demonstrating expert-level understanding of a spe-

cific area of SAP software and the ability to drive innovation and solution opti-

mization through in-depth knowledge and vision. Certification at this level

requires broad project experience, comprehensive SAP product knowledge, and

the ability to create a future IT vision within complex project environments.

With master-level certification, you can:

– Secure your place in an exclusive community of visionary experts

– Pass a peer-reviewed, comprehensive admissions process

– Define and guide long-term strategy

– Participate in master-level briefings, colloquiums, and industry events

Though no course or set of courses is required to take a particular certification

exam, SAP does provide a listing of recommended course work to help you pre-

pare. (For this examination, see the section Becoming an SAP Certified ABAP Devel-

opment Associate: Overview in this chapter and Chapter 2.)

Tip

While it is not necessary for you to have completed a lower-level (associate) exam

to take a higher-level (professional) exam, many professional-level certification

seekers may find it valuable.

Advanced Certification Levels

SAP is moving toward higher-level item writing methods and more advanced

assessment techniques to better test understanding, application, and analytical

skills rather than knowledge recall. In addition, the tests for the higher levels of

certification have been revised to be more clearly job-task-aligned and therefore

reflective of actual experience.

Certified consultants will be offered the opportunity to join the new certification

community and access a wide range of benefits. A 2006 survey of existing consul-

tants pinpointed the desire for continuous learning, and SAP Education has con-

tinued outlining clear paths, including fast tracks for existing consultants, to

move upward or across into further levels. Existing certifications will retain their

validity.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Becoming an SAP Certified ABAP Development Associate: Overview Chapter 1 33
You can sit for a particular SAP certification exam for the same release a maximum

of three times. A candidate who has failed an examination three times for a spe-

cific release may not attempt that examination again until the next release. You

must wait 30 days after you have taken an exam before you can take it again. This

is to give you time for additional preparation in those areas where you were

unsuccessful. The fee for certification retakes is the same as for the initial exam.

Tip

If you are unsuccessful in passing your certification exam after two attempts, and

if you have not previously taken SAP training classes, we highly recommend that

you supplement your current knowledge by completing the training offered by

SAP.

Note

On arriving at the test center, you will be required to present two valid forms of

ID; one of these must be a valid photo ID, such as passport, driver’s license, or

government-sponsored ID card.

Becoming an SAP Certified ABAP Development Associate:

Overview

The code used to reference the examination for this book (also known as the book-

ing code) is C_TAW12_750. The current certification test is entitled SAP Certified

Development Associate - ABAP with SAP NetWeaver 7.50.

The certification test for SAP Certified Development Associate – ABAP with SAP

NetWeaver 7.50 verifies in-depth knowledge around ABAP development. This cer-

tificate proves that the candidate has a fundamental understanding within this

profile and can apply these skills practically under supervision in a project envi-

ronment.

Associate Examination Specifics

� Software components: SAP NetWeaver 7.50

� Number of questions: 80

� Duration: 180 minutes

Chapter 1 ABAP Development Certification Track: Overview34
Associate certifications are targets for those with between one and three years of

knowledge and experience. The primary source of knowledge and skills is based on

the corresponding training material.

Note

This certification may have a different passing score from previous or different

certification exams. (A passing score is calculated by experts in the field and varies

between versions of the associate examination for different releases and from the

professional examinations.)

Remember that for multiple-response items, no partial credit is given.

Competency Areas

Table 1.1 will help you identify the competency areas covered in this test. The num-

ber of plus (+) signs indicates the portion of the test dedicated to a particular com-

petency area, or its weighting per topic (+ = <8%, ++ = 8-12%, +++ = >12%). The Ways

to Attain columns identify standard SAP Education courses that cover the material

tested in the certification examination. The primary course focuses specifically on

the material in the certification examination, whereas the Alternative and Other

columns identify other courses that contain the same material.

Ways to Attain

Topic and Weighting Primary Alternative

ABAP Programming +++ TAW10, TAW12 BC400, BC402

ABAP Dictionary +++ TAW10 BC430

Data Types and Data Objects ++ TAW10, TAW12 BC400, BC402

Classical User Interfaces ++ TAW10, TAW11E BC400, BC405, BC410

SQL Statements including Update

Strategies ++

TAW10, TAW11E BC400, BC402, BC414

Enhancements and Modifications ++ TAW12 BC425

ABAP Objects ++ TAW12 BC401

Web Dynpro for ABAP + TAW12 NET310

SAP NetWeaver Overview + TAW10 SAPTEC

Internal Tables + TAW10, TAW12, TAW11E BC400, BC402, BC430

ABAP Tools + TAW10, TAW12, TAW11E BC400, BC401, BC402

Table 1.1 Topic Areas and Exam Weighting
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Becoming an SAP Certified ABAP Development Associate: Overview Chapter 1 35
To prepare for this exam, remember that the exam covers a broad range of topics

and subjects, and it is not therefore possible to ask many questions on any one

topic. Certain topics, such as basic ABAP program and interface creation, class

identification analysis and design, enhancements and modifications, ABAP types

and data objects, and the ABAP Dictionary receive more emphasis than topics such

as ABAP Debugger program usage, Unicode, and ALV Grid Control.

Tip

You should use the percentage guides from Table 1.1 to guide the allocation of

your preparation time.

As you will see in the practice exam questions, a good understanding of various

programming techniques and the system architecture is helpful when choosing

the best answer from a list of possible approaches. Remember that you must aver-

age about two minutes per question (there are 80 questions and a time limit of 180

minutes), so arriving at the correct answer quickly is essential to completing the

entire examination.

For these types of questions where multiple answers are correct, it may be helpful

to use a selection and elimination strategy. You can possibly eliminate answers

that are factually wrong while selecting answers that are clearly correct. This leaves

fewer answers you might not be sure of, thus speeding up the selection process.

Chapter 2 provides several techniques to help you narrow down the options to

questions.

For most questions in this examination, the answers can be found in the course

material listed for that area (see the Ways to Attain columns). Although several

answers may be very similar, you should take sufficient time to clearly understand

the meaning of each answer rather than rushing. That will help you distinguish

which answers are correct.

Normally, the more ABAP experience you have, the easier you will find the exam-

ination. Be conscious that the examination is based on SAP NetWeaver 7.50, and

not on previous releases. In places where there are differences between release

7.50 and previous releases, the examination will normally focus on release 7.50,

although in several cases the way the question is phrased will indicate that it refers

to a previous release.

Although there are no “trick” questions or answers, you should think through the

choices to make sure you understand the exact meaning and impact of each

option before making your selection. Some of the programming questions can

Chapter 1 ABAP Development Certification Track: Overview36
involve a significant amount of code or provided detail. It can be time-consuming

to identify what is being asked, but it is important to understand the question

before attempting to answer it.

In the Preface, we discussed the various types of questions you can expect. Some

of the questions require you to select the single correct option, whereas others

have multiple correct responses. Remember that there is no partial scoring, and

multiple-response questions are scored as either correct or incorrect.

Note

You are not allowed to use any reference materials during the certification test

(that is, no access to online documentation or to any SAP system).

As the certification process is ever-evolving, you should always check the certifica-

tion site for changes to this information. The certification site can be found on the

SAP website at http://training.sap.com. Then use the search for the term “C_TAW”.

You now should now understand the differences between the various certification

examinations for ABAP so you can identify which certification examination is

most appropriate for your knowledge level and focus your study accordingly. Your

understanding of where you need to study will make the use of your time more

productive.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

http://training.sap.com

Chapter 2

Courses and Experience

Techniques You’ll Master:

� Learn about additional sources of information

� Structure your understanding and thinking

� Explore the SAP test design

� Access and use general test-taking help

Chapter 2 Courses and Experience38
This book is not a substitute for SAP courses or experience. Though we would like

to provide all the information you need, it is simply not practical. As a result, we

will identify which training provided by SAP Education is necessary and provide

generally available information. SAP provides access to the documentation, and

we find the information in the SAP Community to be extremely beneficial.

Training Courses for ABAP

The courses available for ABAP are divided into two curriculum tracks: one

focused on the certification examination (see Table 2.1) and one organized by topic

(see Table 2.2).

Course Description Length

TAW10 ABAP basics 10 days

TAW11E ABAP details eLearning (~12 hours)

TAW12 ABAP Objects and how to use them 10 days

Table 2.1 Minimum Certification Training

Course Description Length

BC400 ABAP Workbench foundations 5 days

BC401 ABAP Objects 5 days

BC402 Advanced ABAP 5 days

BC405 Programming ABAP reports 5 days

BC414 Programming database changes 2 days

BC425 Enhancements and modifications 5 days

BC430 ABAP Dictionary 3 days

NET310 Fundamentals of Web Dynpro ABAP 5 days

NW001 Technology solutions powered by SAP NetWeaver eLearning (~12 hours)

Table 2.2 Topic Courses for Certification Training
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Strategic Understanding Chapter 2 39
Sources of Information

In addition to the course material, you may find additional information on the

SAP Community at http://scn.sap.com. Select the path Developer to find a very use-

ful site containing information in the form of white papers, articles, blogs, wikis,

and eLearning material.

One area within the SAP Community that is often overlooked and that we have

found to be very useful for preparation is trial versions. On http://scn.sap.com,

navigate to Developer • ABAP Platform • Trials/Downloads, which contains trial

versions of SAP NetWeaver that you can install and explore in the cloud (using

SAP’s Cloud Appliance Library). Several of the screenshots in this book were taken

from these trial versions. If your company or customer is not yet running SAP

NetWeaver 7.50, this mini version will allow you to explore the new features of the

release including the ABAP Debugger and Web Dynpro ABAP.

The mini version, although not a complete copy of an SAP Enterprise Core Compo-

nents (ECC) system, it does provide a functional system.

Another often overlooked area is the SAP Help Portal (http://help.sap.com). If you

go to Product Finder and then ABAP you will find a number of useful areas that doc-

ument changes and functionality of ABAP:

� ABAP – Overview

An introduction to ABAP and the most important umbrella topics.

� ABAP – Release-Specific Changes

List of all changes and enhancements made to ABAP since Release 3.0.

� ABAP – Programming Guidelines

Rules and hints on using ABAP.

� ABAP – Security Notes

Overview of potential security risks in ABAP programs.

� ABAP – Examples

A compilation of executable example programs.

The SAP PRESS website at www.sap-press.com/programming can also be helpful.

There you can find many other books that can be extremely useful.

Strategic Understanding

Structuring your thinking is one of the main ways to build an effective memory.

Those with a perfect memory can simply review the material and pass the test, but

http://scn.sap.com
http://scn.sap.com
http://help.sap.com
http://www.sap-press.com/programming

Chapter 2 Courses and Experience40
for the rest of us, our success is linked to our understanding. As you go through

this book, try to keep the following thoughts in mind. Remember that in many

cases an understanding of why something occurs will provide you with the correct

answer even if you do not know the answer. The following is the wisdom gleaned

from many sources:

� Monitor your comprehension.

You can only remember and fully use ideas that you understand. Find ways to

monitor your comprehension. Get in the habit of saying to yourself, “Do I

understand this?”

� Always check the logic behind the ideas.

For example, do things happen in a way that you would predict? If you can see

the logic in something, you are much more likely to be able to reconstruct that

idea even if you cannot immediately recall it.

� Watch out for anything that seems counterintuitive.

You are less likely to remember something that does not seem logical or that

you do not agree with.

� Test your own understanding.

You can do this by discussing your thoughts about a topic with colleagues to see

if they see things the same way as you. Listen to their input and evaluate your

comprehension.

� Generate your own examples.

Use your general knowledge and experience to relate new ideas to what you

already know. Then bring your examples into a context you are already familiar

with.

� Think in pictures, shapes, and colors.

Concrete images are easier to remember than abstract ideas.

– While studying, consider making notes with pictures, shapes, and colors, and

then review your notes often to solidify the images in your memory.

– Use shapes such as flow charts, triangles, boxes, and circles to organize ideas.

– Build a picture or play (set of actions) around an idea and rerun it in your

head.

� Use mnemonics for important ideas.

Mnemonics are memory-training devices or ways of making associations to aid

in recall. There are several kinds you may be familiar with already:

– Rhymes

– Acronyms to collapse the beginning letters of a set of information into one

or a few words to help you remember all of the components
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

SAP Examination Strategies Chapter 2 41
– Building the beginning letters of a set of information into a sentence, which

usually results in a somewhat whimsical sentence that is easily remembered

� Use repetition.

The more times you review something, the better you will be able to recall that

information. To enhance this effect, whenever you go through something, try

to find a different angle so that you are not just repeating exactly the same

activity. By varying your approach, you will create more connections in long-

term memory.

SAP Examination Strategies

As the scheduled date of your examination comes closer, you should review the

following points. Whereas these points will not help with your understanding,

they may assist you if you become stuck while taking the examination. Keep the

following points in mind while preparing to take the examination:

� SAP exams are given online. This is an advantage because you can mark ques-

tions you are unsure of and return to them if you have time remaining.

� The questions are grouped in sections by topic. Therefore, Part II of this book

dedicates a chapter to each of these topics.

� The exam has several versions. This means that you may not receive the same

questions on a retry.

� No exam questions concern menu paths or transaction codes.

� Concentrate on the concepts and reasoning used within a topic.

� Learn the methodology behind a topic. You will be asked the “why” of doing

something. For example, “Why doesn’t this line of code work as expected?”

� Consider scanning the exam first to get a feel for the types of questions and

doing the easy ones first to boost self-confidence.

� Answer all the questions (unanswered questions are worth zero points). If you

do not know the answer and cannot reason it out, at least guess. You may not

get it right, but if you skip it, you are guaranteed to get it wrong.

� If you get stuck on a question, mark it and move on. All questions marked can

be returned to before completing the examination.

� Stay “within the box.” Consider the topic section in which you are currently

working. An answer unrelated to this topic is probably incorrect.

� Read the questions slowly and do not make assumptions.

Chapter 2 Courses and Experience42
� When reviewing SAP material, be aware of certain words and phrases. Condi-

tional words such as or or can in relation to SAP are more likely to be true than

“hard” words such as cannot.

� Although the exam is aimed at understanding rather than memory, memoriza-

tion is not a dirty word. Frequent, thorough review will result in memorizing

many facts and will help tremendously in eliminating some incorrect

responses immediately.

� Think of and use terms the way SAP uses them. It will help in the exam environ-

ment.

� Be reasonable. Recognize common sense versus nonsense. If an answer seems

strange, it likely is.

� The questions will be based on an understanding of SAP NetWeaver 7.50. Future

changes to functionality based on back ports from later releases will not be on

the examination. Questions on this exam will only relate to functionality that

exists with this release or earlier.

� Rest is important. Try to get a good night’s sleep before the test. Studies indicate

that lack of sleep affects concentration, a major ingredient in a multiple-choice

exam.

Note

You may or may not get your results immediately after the exam is completed.

� If you do receive your results right away:

You will not get specific details on what questions were correct or incorrect and

why. You will receive the percentage of correct answers you achieved for each

topic section presented.

� If you do not receive your results right away:

Your results will be mailed to you.

General Examination Strategies

This examination is multiple choice and multiple response. The following guide-

lines will help you correctly answer multiple-choice questions on exams:

� Notice important words in the item.

This will help you focus on the information most needed to identify the correct

answer choice.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

General Examination Strategies Chapter 2 43
� Read all the answer choices before selecting one.

The last answer choice could be just as correct as the first.

� Eliminate answer choices you are certain are not correct.

This will help you narrow down the correct answer choice and focus more accu-

rately.

� Are there two answer choices that are opposites?

One of these two answer choices is likely to be correct.

� Look for hints about the correct answer choice in other questions on the test.

The correct answer choice may be part of another question somewhere else on

the test.

� Look for answer choices that contain language and terminology used by your

instructor or found in this book.

An answer choice that contains such language is usually correct.

� Stick with your initial answer unless you are sure another answer choice is

correct.

Most often, your first choice is correct.

Knowing how multiple-choice items are constructed and using these guidelines

will help you improve your score on a multiple-choice test.

You now have additional sources of information that can be useful for the certifi-

cation examination. You can now structure your thinking, and this will both

increase your understanding of the subject and provide you with mechanisms to

work through questions on the examination. Your understanding of how SAP

designs the test will allow you to eliminate incorrect answers.

© 2018 by Rheinwerk Publishing Inc., Boston (MA)

PART II

Exam Preparation

© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Chapter 3

SAP NetWeaver:
Overview

Techniques You’ll Master:

� Differentiate between the classic SAP Application Server and the

SAP NetWeaver Application Server

� Understand the SAP Business Suite

� Describe the purpose of kernel and administration services

� Recognize the structure of an ABAP application server

� Determine the structure of a work process

Chapter 3 SAP NetWeaver: Overview48
The SAP NetWeaver Application Server (SAP NetWeaver AS) is the current techni-

cal platform on which ABAP runs. It can be used for several business applications.

In this chapter, you are provided with a basic understanding of how an ABAP appli-

cation server functions. We discuss the evolution of the classic SAP Application

Server into the SAP NetWeaver AS, and you learn about the components running

on SAP NetWeaver and how they can be configured. We also delve into the struc-

ture and use of work processes on an ABAP application server.

Real-World Scenario

You have been asked to lead a new project installing a new implementation

of an SAP system. It is your responsibility to put together a presentation

explaining to management the basics of how an SAP NetWeaver AS works

and provides scalability, data integrity, and hardware and database indepen-

dence.

Objectives of This Portion of the Test

The purpose of this portion of the certification examination is to verify that you

have general knowledge of the SAP NetWeaver Application Server for ABAP (SAP

NetWeaver AS for ABAP) and know how the different processes work together. This

portion of the examination will test your knowledge of a narrow range of topics.

The points you need to understand for this section include:

� What components are part of the SAP NetWeaver AS

� What components are part of the SAP NetWeaver AS for ABAP

� The use of a dialog step in a work process

� How parts of the kernel and administration services make the SAP NetWeaver

AS both database- and platform-independent

Key Concepts Refresher

If you are new to ABAP development, you may want to return to this chapter after

you read Chapter 8. In many ways, these two chapters are closely related. You will

find the technical reasons in this chapter for logical units of work and the SAP lock

objects.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 3 49
SAP Products in a Nutshell

SAP offers several products for companies of all sizes. The products are scalable to

ensure that they can be adjusted to any size organization and are adaptable to a

company’s constantly changing processes.

� SAP Business One is designed for small companies with fewer than 100

employees and 30 users, and it covers their core processes (such as finance,

sales, customer service, and operations).

� SAP Business ByDesign is designed for small and midsize companies with

between 100 and 500 employees that want to use an on-demand solution to

improve their core processes.

� SAP S/4HANA is a real-time enterprise resource management suite. It is built on

SAP’s advanced in-memory platform, SAP HANA. It can be deployed in the

cloud or on-premise regardless of industry or business size.

� SAP Business Suite is an extended family of business applications that enables

companies to manage their entire business.

The SAP Business Suite consists of several modular enterprise software products

that support end-to-end company processes. The SAP Business Suite is part of the

Business Process Platform. The Business Process Platform (BPP) is a prerequisite

for the deployment of a service-oriented architecture (SOA) for business applica-

tions. It is composed of the following parts:

� The SAP Business Suite, which provides ready-to-execute software for business

processes.

� Reusable enterprise services for use in composite applications.

� SAP NetWeaver, which is an open integration and application platform for all

SAP applications and certain SAP partner applications. It supports open stan-

dards. SAP NetWeaver is interoperable with the most important technology

standards, such as Java 2 Platform, Java Enterprise Edition (Java EE), and Micro-

soft .NET.

The following are some of the applications included in the SAP Business Suite:

� SAP Enterprise Resource Planning (SAP ERP)

� SAP ERP Human Capital Management (SAP ERP HCM)

� SAP ERP Financials

� SAP ERP Operations

� SAP Customer Relationship Management (SAP CRM)

� SAP Supplier Relationship Management (SAP SRM)

Chapter 3 SAP NetWeaver: Overview50
� SAP Supply Chain Management (SAP SCM)

� SAP Product Lifecycle Management (SAP PLM)

� SAP ERP Corporate Services

Product Evolution

Through the 1990s, SAP provided two basic products: SAP R/2 (mainframe based)

and SAP R/3 (client/server based). They provided similar functionality, and R/3 is

often referred to as a successor to R/2. The development of the underlying techni-

cal platform was closely linked to the application development, and the release

names of the SAP technical platform corresponded to the versions of the applica-

tion themselves. They were therefore referred to as, for example, SAP Basis 4.0B

(the technical platform) and SAP R/3 4.0B (the application). However, most people

just used the term 4.0B to refer to both.

In the late 1990s, the number of SAP products grew significantly, and new prod-

ucts required frequent changes and enhancements to the SAP technical platform

more than to SAP R/3. This shift in development began the transition of the tech-

nical platform from the classical SAP Basis to SAP Web Application Server (SAP

Web AS), primarily to allow direct access to HTTP requests.

This transition also produced a product naming change. Table 3.1 shows the evolu-

tion of the names and the gradual separation of SAP Basis and the application. As

shown in Table 3.1, the technical basis and application development were linked up

to and including SAP R/3 4.6C. The concept of SAP R/3 Enterprise Extensions was

introduced starting with SAP R/3 Enterprise (4.7), which is based on SAP Web Appli-

cation Server 6.20 (the technical platform after evolving into a web server). The

introduction of Enterprise Extensions allowed the core application to remain sta-

ble and provided new business functionality.

Part of

SAP NetWeaver

Basis

Functionality

Business

Functionality

Business

Extension Set

Part of

SAP ERP

3.1I 3.1I

4.0B 4.0B

4.5B 4.5B

4.6B 4.6B

Table 3.1 Evolution from SAP R/3 to SAP ERP
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 3 51
SAP Enterprise Resource Planning (ERP) is a central application of the SAP Business

Suite. The central software component of SAP ERP is SAP ERP Central Component

(SAP ECC). SAP ECC 5.0 can thus be considered the successor to SAP R/3 Enterprise,

and it operates on the basis of SAP NetWeaver AS 6.40. At the time of this writing,

the current version is SAP ERP 6.0 (previously SAP ERP 2005), which includes SAP

ECC 6.0 and other components and operates on the basis of SAP NetWeaver AS

7.xx.

The technical platform during this same timeframe also went through several

name changes as the platform evolved. Up to and through release 4.6, the techni-

cal platform was referred to as SAP Basis. With the introduction of Internet capabil-

ity in release 6.20, the technical platform was referred to as SAP Web Application

Server, and with the ability to include both the ABAP database and the Java data-

base in one system in release 6.40, the name became SAP NetWeaver Application

Server.

The ABAP release is currently still linked to the technical platform functionality

release, which is the reason this certification examination specifies SAP NetWea-

ver 7.50.

4.6C 4.6C

4.6D –

6.10 –

6.20 4.7 1.10 (2003)

(2003) 6.30 4.7 2.00 (2003)

2004 ('04) 6.40 5.0 5.00 2004

7.0 (2004s) 7.00 6.0 6.00 6.0 (2005)

7.1 7.10 – – –

7.2 7.20 – – –

7.3 7.30 – – –

7.4 7.40 – – –

7.5 7.50

Part of

SAP NetWeaver

Basis

Functionality

Business

Functionality

Business

Extension Set

Part of

SAP ERP

Table 3.1 Evolution from SAP R/3 to SAP ERP (Cont.)

Chapter 3 SAP NetWeaver: Overview52
Note

SAP NetWeaver AS 7.10 (or SAP NetWeaver 7.1) is not currently used as the techni-

cal basis for an SAP ECC system. However, other SAP NetWeaver components,

such as SAP Process Integration (PI) and SAP Composition Environment (CE),

already require this SAP NetWeaver release level.

Note

With the completion of the SAP NetWeaver 7.0 release, the Application Server for

ABAP was further developed for release 7.2. Almost all further developments in

the ABAP language and corresponding tools found in release 7.2 were transferred

to release 7.0 in Enhancement Pack (EHP) 2.

With SAP Web AS 6.10, new technologies based on highly scalable infrastructure

were implemented to process HTTP requests directly from the Internet or to send

them as HTTP client requests to the Internet. Before this, an Internet Transaction

Server was required to deal with these requests. The SAP Kernel was enhanced to

include a process known as the Internet Communication Manager (ICM) to

achieve this functionality. The kernel uses the ICM to directly handle HTTP

requests, allowing for new web-based applications—for example, Business Server

Pages (BSPs). Incoming web requests are received by the ICM, which uses the URL

to decide where to forward the request.

Figure 3.1 shows the basic architecture of an SAP NetWeaver server. An SAP Net-

Weaver server is a further evolution of the technical platform. This platform allows

both ABAP and Java to exist and function within the same system. You will notice

similar functions on both the ABAP and Java stacks in the figure. Similar functions

are performed by the dispatcher and the Java dispatcher to connect a work process

to a consumer or user of the process. The ABAP Work Processes and the Java Server

Work Processes perform processing and database access. On the ABAP side, the

gateway communicates with external servers, and (as mentioned previously) the

ICM processes all HTTP requests. The Software Deployment Manager (SDM) is a

standard tool used to install J2EE components on the Java application server.

These web technologies were first used with BSPs in SAP Web Application Server

6.20. BSP applications are self-contained applications similar to an SAP transac-

tion. Unlike an SAP transaction, the presentation layer is not the SAP GUI, but a

web browser. The BSP dynamically generates HTML pages to provide the presenta-

tion. It defines the elements for user interaction (in other words, input fields and

buttons). These are created using server-side scripting in ABAP. The application
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 3 53
logic is provided through the event handling of a BSP. Beginning with SAP Net-

Weaver 7.0, WebDynpro ABAP is also an option; in fact, it has been possible to cre-

ate WebDynpro Java applications since SAP NetWeaver AS 6.40 (see Chapter 16 for

details on WebDynpro).

Figure 3.1 Components of SAP NetWeaver AS with the ABAP and Java Stacks

SAP Web Application Server 6.20 also provided a Java and an ABAP stack. SAP Net-

Weaver Application Server Java features the Java dispatcher and Java server pro-

cess components, which perform tasks similar to the ABAP dispatchers and work

processes. Release 6.40 provided the database with two schemas: one for the ABAP

data and one for the Java data (in other words, one set of ABAP tables and one set

of Java tables, depending on the SAP products you use). This was the first release

that permitted both ABAP and Java to run together on the same server, although

you could also have just one of the two. Because the data in the database is sepa-

rated, access of data from one stack to the other is accomplished through the Java

Connector (JCo).

In release 7.40, two new communication channels were introduced, which can also

be connected to each other. These are ABAP Messaging Channels (AMC) and ABAP

Push Channels (APC), which we discuss in the following subsections.

SAP Web Application Server

ABAP Java

SDM

Client
(SAP GUI)

Client
(SAP GUI)

Dispatcher

Java
server

processes

Dispatcher
queue

ICMMemory
pipes

ABAP
work processes

Central services

Message
server

Enqueue
server

Java dispatcher

Database Database

O
th

er
 a

p
p

lic
at

io
n

 s
er

ve
r

o
r

SA
P

 s
ys

te
m

Client
(web browser)

Message
server

G
at

ew
ay

Chapter 3 SAP NetWeaver: Overview54
Note

While the way to ABAP 7.40 was not very linear and involved development in

enhancement packages (EHPs as 7.02 and 7.31), development from ABAP 7.40 on

took place in support packages. The support packages 7.40 SP05 and 7.40 SP08

were both delivered with new Kernels 7.41 and 7.42. New kernels meant new func-

tionality. With support packages, most people expect bug fixes but no new func-

tionality. It is why 7.40, SP08 was the last one bundled with a new kernel. All

further SPs for 7.40 stay on Kernel 742 and are real support packages again.

Of course, the ongoing development of ABAP did not stop with that. A new release

line was opened for SAP’s internal cloud development, starting with ABAP 7.60

based on Kernel 7.43. This line has short release cycles, where each release is con-

nected to its own kernel and delivers new functionality. These releases are used–

and thereby tested–by SAP-internal development teams.

For all environments other than SAP NetWeaver AS for ABAP for Cloud Develop-

ment, the now shipping release ABAP 7.50 was created as a copy of ABAP 7.62

based on Kernel 7.45. For these environments, as for example SAP S/4HANA or SAP

NetWeaver 7.50 standalone, ABAP 7.50 is simply the direct successor of ABAP 7.40

and provides the ABAP Language and Runtime Environment for SAP NetWeaver

7.50.

ABAP Messaging Channels

ABAP Messaging Channels are a method of communication between ABAP pro-

grams, via messages that can be used from SP02. ABAP Messaging Channels enable

a new type of communication between SAP NetWeaver AS for ABAP programs,

which goes beyond the limits of an application server. Messages can be exchanged

between any SAP NetWeaver AS for ABAP programs, including communication

between different user sessions and application services. Data objects with specific

data types are allowed as messages. Messages that can be sent and received are:

� Text strings

� Byte strings

� Content that can be serialized in accordance with fixed protocols; helper classes

are available for serializations and deserializations

ABAP Messaging Channels are implemented as repository objects that can be

accessed in sender and receiver programs via an interface-based and class-based

application programming interface (API).
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 3 55
Any data object can be sent by being serialized by the sender and deserialized by

the receiver. Possible formats include XML or JSON in strings or SAP’s own Push

Channel protocol.

The length of messages that can be sent is currently restricted to approximately

30,000 bytes. Character strings are converted to the UTF-8 format.

ABAP Push Channels

ABAP Push Channels can be used only from SP05 and enable bidirectional com-

munication with the Internet for ABAP programs using the WebSocket protocol

(Figure 3.2). Unlike HTTP, the WebSocket protocol, which is based on TCP, makes

push communication possible. Under the traditional pull principle, each response

of a server requires a preceding client request; under the push principle, however,

it is enough to have an open connection between client and server, which is used

by the server to pass information as soon as it becomes available. This protocol

reduces the number of connections between client and server. ABAP Push Chan-

nels can be used to make SAP NetWeaver AS for ABAP into a WebSocket server for

WebSocket clients.

Figure 3.2 ABAP Push Channels Use Cases

ABAP Push Channels were expanded in NetWeaver 7.50 to include TCP Sockets in

addition to the WebSocket protocol. It also allows an SAP NetWeaver AS for ABAP

Stateless
Server

Stateful
Server

Stateless
Client

Stateful
Client

Detached
Client

Client

TCP Socket/
WebSocket

Server

Chapter 3 SAP NetWeaver: Overview56
used as an APC server to be stateful, whereas previously only stateless servers were

possible. Stateful protocols require the server to maintain session information

through multiple requests, whereas stateless retains no information between

requests.

An SAP NetWeaver AS for ABAP can now operate as an APC client. Clients known as

detached clients make it possible to open an APC connection to either a stateless

or stateful APC server, immediately detaching the connection that allows it to be

accessed by attached clients. A connection handle can be used across the entire

system to access an existing APC connection.

A new class (CL_APC_TIMER_MANAGER) creates timer managers. A timer manager

makes it possible to start and stop a timer in stateful APC applications where the

WAIT statement is not allowed.

Another new class in 7.50 and higher is CL_DYNAMIC_DESTINATION, which is used to

manage dynamic RFC destinations. The method CREATE_RFC_DESTINATION allows

you to create a dynamic destination and use it in the current session for an RFC.

In addition to the general publish and subscribe, a point-to-point communication

option was introduced in 7.50 for ABAP Messaging Channels. A sender object

addresses precisely one receiver session either synchronously or asynchronously.

You use the factory method CREATE_MESSAGE_PRODUCER_BY_ID of the class CL_AMC_

CHANNEL_MANAGER to do this.

SAP NetWeaver Architecture

The evolution of the technical platform into SAP NetWeaver provides several dif-

ferent ways to install and use the SAP NetWeaver platform. The installation

options for SAP NetWeaver AS are as follows:

� SAP NetWeaver Application Server for ABAP System

� SAP NetWeaver Application Server Java System

� SAP NetWeaver Application Server for ABAP + Java System (Figure 3.3)

Different SAP NetWeaver components require the SAP NetWeaver AS to be run

with certain stacks configured. SAP PI, for example, requires both the ABAP and

Java stacks. Depending on the use of the server, it is possible to use just ABAP or

just Java.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 3 57
Figure 3.3 SAP NetWeaver AS Dual-Stack Installation

Note

When talking about an SAP NetWeaver AS, the term instance is often used. An

instance has the following properties:

� Always has exactly one dispatcher (see the User-Oriented View section for the

dispatcher’s use).

� Starts when the dispatcher starts.

� Requires at least two dialog work processes (see the Structure of a Work Process

section for details), but has at least a minimum number of work processes

defined by the system.

� Is also called the application server in the software-oriented view of the client–

server model (the next note discusses the differences between the software-

and hardware-oriented views). From a software-oriented view, the collection of

services shown in Figure 3.1 is an application server, but from a platform-ori-

ented view, they make up an instance.

An instance runs on one physical server, but there can be multiple instances on

one physical server. The instance is identified by the system ID (SID) and the

instance number.

SAP GUI Browser

Internet Communication Manager (ICM)

AS ABAP AS Java

ABAP Dispatcher
Start

Service

Java SP

Java
VM

In
st

a
n

ce
 C

o
n

tr
o

lle
r

Central Services

Start

Message
Server

Enqueue
Server

SAP Database Schema

Java SP

Java
VM

WP WP WP

ABAP
VM

G
a

te
w

a
y

SAP Database Schema

ABAP
VM

ABAP
VM

JCo

Start
Service

Chapter 3 SAP NetWeaver: Overview58
An instance is an administrative unit that combines SAP system components that

provide one or more services. The services provided by an instance are started or

stopped together. Each instance has its own memory buffer areas.

When you install an SAP system, you have the option of separating the processes

at the application level from those at the database level. This means that the data-

base for an SAP system can be installed and operated on a separate physical server

from the instances of the SAP system, and, in fact, this is usually the case. There is

exactly one database for each SAP system.

The central instance of the SAP system is distinguished by the fact that it offers ser-

vices that no other instance of the system offers. For SAP NetWeaver AS for ABAP,

these are the message server and the enqueue work process. The other instances of

the system are typically called dialog instances.

Note

Before we discuss various client-server configurations in the context of SAP sys-

tems, we need to define the concepts of client and server. There are basically two

ways to do this:

� In the hardware-oriented view, the term server means the central server in a net-

work that provides data, memory, and resources for the workstations or clients.

� The other way is a software-oriented view. A service that is provided is called a

server, and a service that consumes or uses that service is called a client. At the

same time, clients can also be servers for other specific services (as you will see

ahead).

Because this book is about programming certification, the rest of the chapter uses

terminology from this software perspective. It is important to understand that our

use of the term system relates to the whole technical platform, and application

server or server refers to a server running in a system, not the actual physical hard-

ware. It is possible to implement an entire application on a single hardware sys-

tem (for example, the trial version mentioned in Chapter 2 allows you to have a

working system on your own PC). In most customer situations, the development

and sandbox (if one exists) are typically a single physical system running a single

server. A single physical system can also support multiple servers, or you can have

multiple physical systems, each running as a single server.

Kernel and Administration Services

The kernel and administration services component is a runtime environment

for all ABAP applications that is hardware independent, operating system
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 3 59
independent, and database independent. The kernel and administrative services

provide another way of looking at the SAP NetWeaver system. The tasks of the

kernel and administration services component are as follows:

� Running applications

All ABAP applications run on software processes (virtual machines) within this

component.

� User and process administration

This component is responsible for the tasks that usually belong to an operat-

ing system. Users log on to the SAP NetWeaver AS and run ABAP applications

within it; they do not have direct contact with the actual operating system of

the host. SAP NetWeaver AS for ABAP is the only user of the host operating

system.

� Database access

Each ABAP application server is linked to a database system consisting of a data-

base management system (DBMS) and the database itself. The ABAP applica-

tions do not communicate directly with the database. Instead, they use

administration services.

As we discuss shortly, these services handle the SAP table buffering on the appli-

cation server, the translation from Open SQL to Native SQL for the database, and

the management of SAP-specific concepts (for example, the client number or

the structure of a cluster table).

� Communication

ABAP applications can communicate both with other SAP systems and with

external systems. It is also possible to access ABAP applications from external

systems using a Business Application Programming Interface (BAPI) or a

Remote Function Call (RFC). The services required for communication are all

part of the kernel and administration services component.

� Control and administration of SAP NetWeaver AS for ABAP

This component contains programs that allow you to monitor and control the

SAP NetWeaver AS while it is running and to change its runtime parameters.

Software-Oriented View

Figure 3.4 represents the software-oriented view of an SAP system. In an ABAP-

based SAP system, the SAP NetWeaver AS for ABAP consists of all SAP graphical

user interface (GUI) components and the ABAP application servers. In this simpli-

fied version, be aware that the SAP GUI can be replaced by a web browser in the

Chapter 3 SAP NetWeaver: Overview60
presentation layer (see Figure 3.4); in other words, users can access the SAP system

through a web browser instead of the traditional SAP GUI (this is shown only once,

but is not restricted to the single occurrence).

An SAP system is a multitier client-server system. The individual software compo-

nents are arranged in tiers and function as clients for the components below them

or servers for the components above them (depending on their position). The clas-

sic configuration of an SAP system contains the following three software layers:

� Database layer

The database layer, which is accessed by the SAP NetWeaver AS, consists of a

central database system. This central database system is made up of the data-

base management system and the database itself.

The database contains the master data and transaction data for your ABAP

application programs. It also contains the control and customizing data for the

application and the SAP NetWeaver AS and the ABAP application programs

themselves. The development objects (programs, screen definitions, menus,

function modules, and so on) are all stored in a special part of the database

known as the Repository. These objects are therefore also referred to as reposi-

tory objects. The ABAP Workbench allows you to work with these objects.

Figure 3.4 Components of SAP NetWeaver Application Server

Database

SAP GUI SAP GUI SAP GUI SAP GUI

Message server

Application server 1 Application server n

Database management server

… …

…

© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 3 61
Note

Beginning with SAP NetWeaver 7.31, it became possible to access SAP HANA from

within ABAP. With NetWeaver 7.40, SAP HANA could be used as the primary data-

base, and the ability to use SAP HANA views or SQL script was supported as of

SP02. The ability to use Core Data Services was introduced with SP05 and the

Eclipse-based ABAP Development Tools (ADT).

� Application layer

The software components of the application layer of SAP NetWeaver AS for

ABAP consist of one or more ABAP application servers and a message server.

Each application server contains a set of services used to run the SAP NetWeaver

AS.

Theoretically, you need only one application server to run an SAP NetWeaver

AS. In reality, the services are normally distributed across more than one appli-

cation server. This means that not all application servers provide the full range

of services. The message server allows for communication between the applica-

tion servers. It passes requests between one application server and another

within an SAP NetWeaver AS. It also contains information about application

server groups and the current load balancing within them. When a user logs on

to the system, this information is used to choose an appropriate server.

� Presentation layer

This layer is the interface between the SAP system and its users. It is possible to

use its software components (referred to as the SAP GUI in this layer) for enter-

ing and displaying data. Another option is through a web browser that can also

be used in the presentation layer. The presentation layer sends the user’s input

to the application server and receives data for display from it. While an SAP GUI

component is running, it remains linked to a user’s terminal session in SAP Net-

Weaver AS for ABAP.

There are several benefits to the distribution of the SAP system over three layers.

It distributes the system load, leading to better system performance. It provides

high scalability, because the software components can be distributed among dif-

ferent hardware virtually without restriction. In the application layer, you can

meet increasing demand by installing additional ABAP application servers.

Note

The use of SAP HANA as a primary database has fundamentally changed where

this scalability occurs. Instead of the traditional scaling at the application level,

the scaling and parallel processing is pushed down to the database. Having the

Chapter 3 SAP NetWeaver: Overview62
database perform the calculations and retrieve the results greatly reduces the

amount of data moved and therefore has performance benefits from several fac-

tors—columnar tables eliminate the need for additional indexes; the multiple

processors and CPUs allow for parallel processing of the data; data compression

again reduces the amount of data movement; and only the results are retrieved.

User-Oriented View

From a user’s perspective, the SAP system is not seen as systems or servers, but as

components that appear as a window on a screen (on a PC, web browser, or other

device). The presentation layer of SAP NetWeaver AS for ABAP creates these windows.

To connect or log on to the SAP system, a user must start an SAP GUI utility called

SAP Logon. The user chooses one of the available SAP systems listed in SAP Logon,

and the program connects to the message server of SAP NetWeaver AS for ABAP in

the selected SAP system. The message server obtains the address of a suitable

ABAP application server (the one with the most unused capability). SAP Logon

starts an SAP GUI connected to that application server, and then SAP Logon is no

longer required for this connection. The SAP GUI initially displays the logon

screen. The process is similar for WebDynpro, but instead of starting a preinstalled

application, you use a web browser and begin with a URL that launches a logon

screen if you are not already logged on.

After the user successfully logs on, the SAP GUI displays the initial screen of the

SAP system in a window on the screen. Each window within the SAP GUI rep-

resents a session. After you log on, you can open additional windows, or sessions

(the exact number is determined by a system parameter, though the default is six

sessions) within the single SAP GUI. These sessions behave almost like indepen-

dent SAP applications. They allow you to run different applications independently

of one another from different sessions.

As you run applications in a session, they may call or trigger more windows (such

as dialog boxes and graphic windows). These additional windows are not indepen-

dent; they belong to the session from which they were called. These windows can

be either modal (the original window is not ready for input) or amodal (both win-

dows are ready for input and interact with each other).

You can open other SAP GUIs by using SAP Logon. To log on to another SAP sys-

tem, remember that each SAP GUI is independent from others. This means that

you can have SAP GUIs representing the presentation layers of several SAP sys-

tems open simultaneously on your personal computer.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 3 63
All ABAP programs run on the ABAP application servers of SAP NetWeaver AS for

ABAP; in other words, in the instance of the SAP NetWeaver AS for ABAP stack. The

application layer of the multitier architecture of an ABAP-based SAP system is

made up of all the ABAP application servers. These application servers execute

ABAP applications and communicate with the presentation components, the data-

base, and each other through the message server.

Figure 3.5 shows the structure of an ABAP application server. The number of work

processes and their types are determined at the startup of SAP NetWeaver AS for

ABAP; each ABAP application server also contains a dispatcher, a gateway, and

shared memory.

Figure 3.5 ABAP Application Server

Let’s dissect each of these.

� Work process

Work processes are components that execute an application. For a dialog work

process, each work process executes one dialog step (for the definition of a

dialog step, see the upcoming Important Terminology section). Each work pro-

cess is linked to a memory area that contains the context of the executing appli-

cation. This context contains the data for the application. After the work process

SAP GUI SAP GUI…

Gateway

Work
process

1

C
o

n
te

xt Work
process

3

C
o

n
te

xtShared
memory

Database

Database management server

Dispatcher

Work
process

2

C
o

n
te

xt

Chapter 3 SAP NetWeaver: Overview64
completes the dialog step, the link to the user and the program context is

removed, which frees it for another user.

� Dispatcher

The dispatcher provides the link between the work process and the user logged

onto the application server (or more accurately, the user’s SAP GUIs or web

browser). It receives requests from an SAP GUI or web browser and directs the

requests to a free work process. Once the work process completes the dialog

step, the resulting screen output is returned to the appropriate user before the

link is released.

� Gateway

The gateway is the interface for the communication protocols of SAP NetWea-

ver AS for ABAP (RFC and CPI/C). Its purpose is to communicate internally with

other ABAP application servers within this system, externally with other SAP

systems, or externally with non-SAP systems.

In an ABAP application server, all work processes use a common main memory

area called shared memory to save contexts or to locally buffer constant data.

Resources that work processes share or use—for example, programs and buffered

table contents—are placed in shared memory.

Local buffering of data in the shared memory of the ABAP application server

reduces the number of database reads required (see Chapter 8 for details), consid-

erably reducing the access times for ABAP application programs.

When you start an SAP NetWeaver AS for ABAP, each ABAP application server reg-

isters its work processes with the database layer and receives a single dedicated

channel (sometimes referred to as a database work process) for each work process.

While the SAP NetWeaver AS is running, each work process is a user (acting as a cli-

ent) of the database system (acting as a server). It is not possible to change the

work process registration while the system is running or to reassign a database

channel from one work process to another. Therefore, a work process can only

make database changes within a single database logical unit of work (LUW). For

more on database logical units of work, see Chapter 8.

Structure of a Work Process

There is a difference between user interaction and processing logic in ABAP

programming. This separation is discussed in more detail in Chapter 12 and Chap-

ter 16. From a programming perspective, user interaction is controlled by screens
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 3 65
(at least for applications in the SAP GUI). A screen consists of two parts: the actual

input mask and the flow logic, which controls a large part of the user interaction.

SAP NetWeaver AS for ABAP contains a special language for programming screen

flow logic. Within a work process, the screen processor executes the screen flow

logic, as shown in Figure 3.6. Through the dispatcher, it takes over the responsibil-

ity for communication between the work process and the SAP GUI, calls modules

in the flow logic, and ensures that the field contents are transferred from the

screen to the flow logic (see Chapter 12 for details).

Figure 3.6 Components of a Work Process

The actual processing logic of an application program is written in ABAP. The ABAP

processor within the work process executes the processing logic of the application

program and communicates with the database interface. The screen processor

tells the ABAP processor which module of the screen flow logic should be pro-

cessed next.

The following services are provided by the database interface:

� Establishing and terminating connections between the work process and the

database

� Accessing the database tables

� Accessing repository objects

Work process

Database interface

ABAP processor

Screen processor

Database

Database management server

Context

Chapter 3 SAP NetWeaver: Overview66
� Accessing catalog information (ABAP Dictionary)

� Controlling transactions (commit and rollback handling)

� Handling table buffer administration on the ABAP application server

Figure 3.7 shows that there are two ways of accessing SAP database tables: Native

SQL and Open SQL using ABAP. Open SQL statements are a subset of standard SQL

that is fully integrated in ABAP. These statements allow you to access data irre-

spective of the database system. Open SQL consists of the Data Manipulation Lan-

guage (DML) part of standard SQL. It therefore allows you to read (SELECT) and

change (INSERT, MODIFY, UPDATE, and DELETE) data. The tasks of the Data Definition

Language (DDL) and Data Control Language (DCL) parts of standard SQL are per-

formed in SAP NetWeaver AS for ABAP by the ABAP Dictionary and the authoriza-

tion system. These provide a unified range of functions, regardless of database,

and contain functions beyond those offered by the various database systems.

Figure 3.7 Components of the Database Interface

Open SQL goes beyond standard SQL to provide statements that, in conjunction

with other ABAP constructions, can simplify or speed up database access. It allows

you to buffer certain tables on the ABAP application server, saving excessive data-

base access. The database interface is responsible for managing the buffer with the

Ta
b

le
 b

u
ff

er
 o

n
 t

h
e

a
p

p
lic

at
io

n
 s

er
ve

r

Database interface

Database

Database management server

Native SQL
module

Database-dependent layer

Buffer
management

Open SQL
module
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 3 67
database. Database table buffers are stored partly in the working memory of the

current work process and partly in the shared memory for all work processes on an

ABAP application server. In cases where SAP NetWeaver AS for ABAP is distributed

across more than one ABAP application server, the data in the various buffers is

synchronized at set intervals by the buffer management. When you buffer a data-

base table, you must remember that the data in the buffer may not always be up to

date. Therefore, you should only use the buffer for data that does not change often

or where the data does not need to be current.

Native SQL is only loosely integrated into ABAP and allows access to all of the func-

tions contained in the programming interface of the respective database system.

In Native SQL, you can primarily use the database-specific SQL statements. The

Native SQL interface sends them as is to the database system, where they are exe-

cuted. You can use the full SQL language scope of the respective database, which

makes all programs using Native SQL specific for the database system installed. A

small set of SAP-specific Native SQL statements is handled in a special way by the

Native SQL interface. SAP recommends that ABAP applications contain as little

Native SQL as possible, because it reduces the portability and maintainability of

your code. Only a few SAP standard components contain Native SQL (for example,

to create or change table definitions in the ABAP Dictionary).

The database-dependent layer in Figure 3.7 hides the differences between database

systems from the rest of the database interface. Owing to the standardization of

SQL, the differences in the syntax of the statements are very slight. When you use

Native SQL, the function of the database-dependent layer is minimal (see Chapter

8 for additional details).

Before you start SAP NetWeaver AS for ABAP, you determine how many work pro-

cesses each ABAP application server will have and what their types will be. Because

all work processes have the same structure, the type of work process does not

determine the technical attributes of the ABAP application server, but instead

determines the type of tasks that can be performed on it. The dispatcher starts the

work processes and only assigns them tasks that correspond to their type. This

allows you to distribute work process types to optimize the use of resources on

your ABAP application server.

Figure 3.8 again shows the structure of an ABAP application server but includes

various possible work process types: Dialog work processes process requests from

an active user to execute dialog steps. Update work processes execute database

update requests. Update requests are part of an SAP Logical Unit of Work (LUW)

that bundles the database operations resulting from the dialog in a database LUW

Chapter 3 SAP NetWeaver: Overview68
for processing in the background. Background work processes run programs that

can be executed without user interaction (background jobs).

Figure 3.8 ABAP Application Server

The enqueue work process administers a logical lock table in the shared memory

area. This single lock table contains all the logical database locks for SAP NetWea-

ver AS for ABAP and is an important part of the SAP Logical Unit of Work (LUW)

process. There is therefore only one ABAP application server with enqueue work

processes. It is normally sufficient for a single enqueue work process to perform

the required tasks.

The spool work process passes sequential datasets to a printer or to optical

archiving. Each ABAP application server could contain only one spool work pro-

cess until release 4.0A, when it became possible to configure more than one. The

last two types of processes are the message server and the gateway: The message

server routes messages between application servers, and the gateway routes mes-

sages in and out of the system to external systems.

Important Terminology

A dialog step is the program processing step that occurs after a screen is released

by a user or, put another way, the processing that occurs during a screen change

SAP GUI SAP GUI…

ABAP Application Server

Database

Database management server

Dialog
work

processes

Update
work

processes

Background
work

processes

Dispatcher

Enqueue
work

process

Spool
work

process
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Practice Questions Chapter 3 69
(even if the same screen is being redisplayed). After the completion of a dialog

step, the work process is released while the next screen is processed by the user on

the presentation server.

A repository object is one of the components (program, screen definitions, menus,

function modules, and so on) stored in a special part of the database known as the

repository.

ABAP Push Channel is based on an event-driven programming model using either

WebSocket or TCP Socket and supporting both stateless and stateful models.

Practice Questions

These practice questions will help you evaluate your understanding of the topic.

The questions shown are similar in nature to those found on the certification

examination. Though none of these questions will be found on the actual exam,

they will allow you to review your knowledge of the subject. Select the correct

answers and then check the completeness of your answers in the following solu-

tion section. Remember that on the exam you must select all correct answers and

only correct answers to receive credit for the question.

1. The Internet Communication Manager (ICM)…

� A. Replaced SAP ITS.

� B. Allows SAP NetWeaver Application Server to process HTTP requests.

� C. Allows the ABAP stack and the Java stack to exchange data.

2. The Java stack and the ABAP stack of an SAP NetWeaver Application Server

must always be installed together.

� A. True

� B. False

3. A work process…

� A. Stays linked to a screen through the dispatcher.

� B. Becomes inactive while waiting for a user.

� C. Uses a common memory area called shared memory.

Chapter 3 SAP NetWeaver: Overview70
4. Each work process… (select all that apply.)

� A. Is independent of other work processes.

� B. Uses a pool of database connections established when the SAP NetWeaver

AS for ABAP started.

� C. Uses a database connection to a work process established when the SAP Net-

Weaver AS for ABAP started.

� D. Can only make database changes within a single database LUW.

� E. Can make database changes spanning multiple database LUWs.

5. Each work process is assigned a type of task that can be performed. Which

statements related to this are true? Select all that apply.

� A. To switch a work process type requires a restart of the SAP NetWeaver AS for

ABAP.

� B. All work processes have the same structure.

� C. All work processes communicate with the database.

� D. All work processes communicate with the dispatcher.

� E. A work process can communicate directly with an external system through

a Remote Function Call.

� F. It is possible to have multiple enqueue work processes on an SAP NetWea-

ver Application Server.

� G. It is possible to have multiple spool work processes on an ABAP application

server.

6. What is the difference between SAP Basis and SAP NetWeaver?

� A. There is no difference; the name change was driven by marketing alone.

� B. All versions of SAP NetWeaver require the use of Unicode.

� C. All versions of SAP NetWeaver include the ability to handle HTTP requests.

7. The dispatcher handles all communication between users, work processes,

and other (external) systems.

� A. True

� B. False
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Practice Question Answers and Explanations Chapter 3 71
8. The ABAP Messaging Channels (AMC) uses the WebSocket protocol to gain

two-way communication instead of HTTP.

� A. True

� B. False

9. ABAP Push Channels (APC) can only use the WebSocket protocol.

� A. True

� B. False

Practice Question Answers and Explanations

1. Correct answer: B

Beginning with SAP NetWeaver 6.10, new technologies based on a highly scal-

able infrastructure were implemented to process HTTP requests directly from

the Internet or to send them as HTTP client requests to the Internet. The SAP

Kernel was enhanced to include a process known as the Internet Communica-

tion Manager (ICM) to achieve this functionality.

2. Correct answer: B

Different SAP NetWeaver components require the SAP NetWeaver Application

Server to be run with certain stacks configured. It is possible to install both the

ABAP and Java stacks, but depending on the use of the server, it is possible to

use just ABAP or just Java.

3. Correct answer: C

All the work processes of an ABAP application server use a common main

memory area called shared memory to save contexts or to buffer constant data

locally. The resources that all work processes use (for example, programs and

table contents) are contained in shared memory. Memory management in SAP

NetWeaver AS for ABAP ensures that the work processes always address the cor-

rect context.

4. Correct answers: A, C, D

Each individual work process works independently, which makes them suitable

for a multiprocessor architecture.

When you start up SAP NetWeaver AS for ABAP, each ABAP application server

registers its work processes with the database layer and receives a single dedi-

cated channel for each. While the SAP NetWeaver Application Server is running,

Chapter 3 SAP NetWeaver: Overview72
each work process is a user (acting as a client) of the database system (acting as

a server). You cannot change the work process registration while the system is

running or reassign a database channel from one work process to another. For

this reason, a work process can only make database changes within a single

database logical unit of work (LUW). A work process must open a separate data-

base LUW for each dialog step. The work process sends a commit command

(database commit) to the database at the end of each dialog step in which it

makes database changes. These commit commands are called implicit database

commits because they are not explicitly written into the application program.

5. Correct answers: B, D, F, G

You can use the system administration functions to switch a work process

while the system is running. Because each work process has the same structure,

they are interchangeable. All work processes must communicate with the dis-

patcher (which assigns the user to a work process), but enqueue work processes

and spool work processes do not communicate with the database. All commu-

nication for a work process occurs with either the dispatcher or the database.

Whereas it is normal to only have one enqueue work process (a single enqueue

work process is normally sufficient to perform the required tasks), it is possible

to have multiple enqueue work processes running. In SAP NetWeaver Applica-

tion Server, you can have only one lock table, but multiple enqueue work pro-

cesses, running. Each ABAP application server can contain multiple spool work

processes.

6. Correct answer: C

The difference between SAP Basis and SAP NetWeaver is that the platform had

become a web server. This included the capabilities to handle HTTP requests

and could include a Java stack in addition to the existing ABAP stack.

7. Correct answer: B

The dispatcher does handle communication between the work process and the

user but does not handle communication with external systems. External sys-

tems use the gateway for communications.

8. Correct answer: B

This is true for ABAP Push Channels (APC), not for ABAP Messaging Channels.

ABAP Messaging Channels communicate between ABAP programs.

9. Correct answer: B

ABAP Push Channels (APC) can use both WebSockets and TCP Sockets.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Takeaway Chapter 3 73
Takeaway

Now that you have learned how an ABAP application server operates, you should

understand the differences between an SAP NetWeaver AS and a classic SAP Appli-

cation Server. You have also learned about the components of a work process and

how they work with other components of an ABAP application server or other lay-

ers (for example, the presentation server and the database server).

Refresher

You must understand the purpose of the different layers or tiers of an SAP Net-

Weaver AS. It is important to understand the architecture and why it is both effi-

cient and scalable. You must understand how this system design handles both the

database (SAP LUW) and execution of programs (dialog steps).

Table 3.2 shows the key concepts for the SAP NetWeaver overview.

Key Concept Definition

SAP NetWeaver Application

Server

The application platform of SAP NetWeaver

SAP NetWeaver Application

Server for ABAP

The stack within SAP NetWeaver AS used to execute ABAP

applications

ABAP application server A software component of the SAP NetWeaver AS for ABAP

that runs all ABAP programs; this is the application layer

of the multitiered architecture of an ABAP-based SAP sys-

tem

Work process A component that can execute an application; it executes

a single dialog step

Dispatcher Establishes the link between the user who is logged on

and a work process

Gateway The interface for communication between the SAP Net-

Weaver AS for ABAP and another system (another ABAP

application server, another SAP NetWeaver AS, or an

external, non-SAP system)

Screen processor A component of a work process that executes the screen

flow logic

Table 3.2 Key Concepts Refresher

Chapter 3 SAP NetWeaver: Overview74
Tips

An understanding of the underlying architecture of the system and servers will

make you a better developer and help you grasp the reasoning for selecting better

or more efficient techniques. However, this underlying architecture of the system

and servers is one most developers do not understand, which leaves them unable

to take advantage of the strengths of SAP NetWeaver.

You should now have a basic understanding of how an ABAP application server

operates and know why an SAP NetWeaver Application Server is different from a

classic SAP Application Server. You should understand which components run on

SAP NetWeaver and what general configuration is possible for an SAP NetWeaver

Application Server. You should also know the components of a work process and

how they work with other components of the ABAP application server or other lay-

ers (presentation server and database server). An understanding of the SAP Net-

Weaver architecture will give you a solid foundation, and you will be successful in

this and other sections of the exam.

ABAP processor A component of a work process that executes the process-

ing logic of the application program and communicates

with the database interface

Database interface A component of a work process establishes a connection

between the work process and the database, provides

access to the database tables and repository objects, con-

trols transaction processing (commit and rollback), and

provides table buffering on the ABAP application server

Key Concept Definition

Table 3.2 Key Concepts Refresher (Cont.)
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Chapter 4

ABAP Workbench
Usage

Techniques You’ll Master:

� Describe the features and capabilities of the ABAP Workbench

� Explain the structure of the Object Navigator

� Use the Repository Browser to edit repository objects

� Access the Repository Information System to search for reposi-

tory objects

� Understand the Enhancement Information System and its use

� Work with the ABAP Workbench tools

� Identify the Front-End Editor and the various settings to

improve productivity

� Determine the concept of the Development Package and the

Transport Organizer

Chapter 4 ABAP Workbench Usage76
The ABAP Workbench is the development environment for the SAP NetWeaver

Application Server ABAP and is available in every ABAP-based SAP system. The

ABAP Workbench provides the development tool needed for application develop-

ment. The Object Navigator, the central entry point into the ABAP Workbench,

contains the most commonly used development tools and is the recommended

development environment.

In this chapter, we will cover the ABAP Workbench tool and the Object Navigator

in detail. We will explain the features and capabilities of the ABAP Workbench, dis-

cuss the structure of the Object Navigator, and discuss the various browsers avail-

able in the Object Navigator. We will cover the Front-End Editor, the Repository

Information System, the Enhancement Information System, and ABAP Work-

bench tools such as the ABAP Editor, Screen Painter, Menu Painter, ABAP Dictio-

nary, Class Builder, Function Builder, and Web Application Builder. Finally, we will

discuss packages and their attributes and the Transport Organizer.

Real-World Scenario

You have started on a customer project as an SAP development lead and have

been asked to explain SAP development tools and the various features of the

ABAP Workbench and the Transport Organizer to the project team.

As a development lead, you have to organize the technical development for

the project. Your job is to define the development standard and the tools to

be used for the various developments. You also have to define the develop-

ment project, package, system landscape, and transport strategy for all of the

developments in the project.

Objectives of this Portion of the Test

One of the objectives of the ABAP certification examination is to verify your

knowledge of the ABAP Workbench and the various tools associated with it. You

need to understand the following to be a successful ABAP developer:

� ABAP Workbench and development tools

� ABAP Workbench settings

� The use of various browsers in the ABAP Workbench
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 4 77
� The Front-End Editor and the settings to improve productivity

� Development Packages and Transport Organizer

Key Concepts Refresher

The ABAP Workbench is the integrated development environment for the applica-

tion developer. The Workbench has most of the tools a developer needs to develop

an application. Some of the most commonly used Workbench tools are:

� ABAP Editor

� Screen Painter

� Menu Painter

� ABAP Dictionary

� Web Dynpro development tools

� Package Builder and Transport Organizer

� Repository Browser

� Repository Information System

� Enhancement Information System

ABAP Workbench

ABAP stands for Advanced Business Application Programming and is the language

in which most of the SAP business applications are written. The ABAP Workbench

is the development environment for the ABAP developer. The ABAP Workbench

consists of the development tools required for creating repository objects and can

be started via Transaction SE80. The Object Navigator is the main entry point to

the ABAP Workbench and can be accessed from the menu path Overview • Object

Navigator.

The main screen of the ABAP Workbench is divided into the navigation area and

the tool area (see Figure 4.1). The navigation area displays the object list as a hierar-

chy tree. The object list consists of all of the objects within an application area,

package, program, global class, module pool, function group, and so on. The bene-

fit of editing or displaying the object within the Object Navigator is that you can

view all of the related objects for the program, class, module pool, or package as a

tree structure and can access them from the navigation area by just double-click-

ing on the object. If you work with the repository object with the individual tool,

Chapter 4 ABAP Workbench Usage78
then you only have the option to work with one type of object at a time with one

tool.

Figure 4.1 ABAP Workbench Screen

The tool area is used to display or edit the repository object using the relevant tool

editor. The navigation area or the tool area can be resized. You can hide the naviga-

tion area by clicking on the Full Screen On/Off icon on the application toolbar.

The object navigation history with the ABAP Workbench is stored in the naviga-

tion stack. The Object Navigator has a menu option to display the navigation his-

tory. You can display the navigation window from the menu path Utilities • Display

Navigation Window or by clicking on the Display Navigation Window icon , and

an additional window for the navigation stack will be displayed under the tool area

of the workbench. You can scroll back through the navigation stack by clicking on

the blue left arrow or forward by clicking on the right arrow icon in the navigation

stack window. This tool helps you scroll through the objects you have viewed

during the logon session.

Worklist Navigation stack

Object list selector

Navigation area

Navigation area
context menu

Tool area
context menu

Tool area

Full screen
on/off menu
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 4 79
You can create your own worklist within the ABAP Workbench. A worklist is useful

to help you manage the development objects on which you need to work. To create

your worklist, display or edit the repository object first in the tool area of the ABAP

Workbench. Then select Utilities • Worklist • Insert Current Object from the menu.

This inserts the object in the worklist. You can display the worklist via the menu

path Utilities • Worklist • Display, and an additional window for the worklist will be

displayed under the tool area of the ABAP Workbench.

You can access the Reuse Library from the workbench menu path Environment •

Reuse Library. The Reuse Library provides you with a set of reusable objects with

example code and documentation. You can execute the code to display the result

and copy the reusable code for your application development. The Reuse Library is

displayed in the browser, and you can display the individual development objects

within the Reuse Library by double-clicking on the product and reading the exam-

ple code. You can also access the Reuse Library via Transaction SE83.

Similar to the Reuse Library, you can access the ABAP examples via the menu path

Environment • Example • ABAP Example. The ABAP example programs are dis-

played in the browser, and you can display individual programs by double-clicking

on the example program in the navigation area. The actual program is displayed in

the tool area of the Object Navigator. ABAP examples demonstrate most of the

keywords and syntax based on the ABAP documentation. You can also access the

ABAP documentation from the ABAP examples screen. ABAP examples can also be

displayed by executing Transaction ABAPDOCU.

You can display the context menu for an object within both the navigation area

and the tool area by right-clicking on the object. The context menu offers only the

functions that are relevant for the selected repository objects. You have the option

to add your development objects to your favorites list within the Object Navigator

by clicking on the Favorites icon in the navigation window.

You can access the individual tools to create the repository objects using individ-

ual transaction codes or access the most commonly used tools from the Object

Navigator. The initial screen of the Object Navigator displays the Browser list on

the top-left section of the screen. The Object Navigator has several browsers that

you can use for various development needs. You have the option to navigate to

the relevant tool based on the selected browser from the browser list (see Figure

4.2). You can add or remove browsers from the list via the menu path Utilities •

Settings.

Chapter 4 ABAP Workbench Usage80
Figure 4.2 Object Navigator

The Object Navigator list has the following browser selection options in the object

navigation:

� Web Dynpro Text Browser

You use the Web Dynpro Text Browser to edit the text of the Web Dynpro UI ele-

ments that are created or managed in the Online Text Repository (OTR). This

tool allows you to change OTR texts associated with Web Dynpro views that

have been stored in the OTR or inserted from the OTR in the Web Dynpro appli-

cation.

� MIME Repository Browser

You use the MIME (Multipurpose Internet Mail Extensions) Repository Browser

to browse or import MIME objects such as style sheets, icons, graphics, and so

on from the ABAP Workbench. The MIME Repository stores these MIME objects

in the SAP system. The MIME Repository Browser automatically creates a folder

for BSP applications. You can import MIME objects from the Repository Browser

or view the MIME objects by double-clicking on them.

� Tag Browser

The Tag Browser provides the documentation of the user interface elements

that can be used for web page development for BSP applications and Internet

Transaction Server (ITS) templates. You have the option to filter the tags for the

BSP application or the tags for the ITS templates. The Tag Browser provides doc-

umentation for HTMLB, BSP extension, BSP Directives, HTML, WML, and

XHTML.

� Test Repository Browser

You use the Test Repository Browser to manage test cases. You can display

eCATT test scripts, manual test cases, and external test cases. You also have the

option to create test cases within the Test Repository Browser. It’s a good tool

for you to manage the test cases within the Test Repository.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 4 81
� ABAP Unit Browser

This ABAP Unit testing tool for developers is included in SAP NetWeaver 7.0

EHP 2 and is integrated with the Object Navigator. The ABAP Unit tool provides

the ABAP developer with an easy-to-use software verification and validation

mechanism. It is highly integrated with the ABAP Workbench, which makes it

easier for an ABAP developer to get accustomed to an ABAP Unit. Using the ser-

vice method of class cl_unit_assert, you can check many conditions; the sys-

tem diverges to the ABAP Unit result display if some condition is not fulfilled. In

the result display, you can navigate to the position where the error occurred

that caused the incorrect result. The tests are implemented in plain ABAP

Objects as methods of local classes.

The test classes are part of the program being tested. This can be an executable

program, a module pool, a function group, or a class pool. The program being

tested can include many test classes, and the test class can contain many meth-

ods. All unit tests belonging to a program being tested are organized in a test

task. You can test whether the test condition or the modularization unit works

properly by using ASSERT methods. For functions and methods with returning,

exporting, or changing parameters, you simply test with the relevant parame-

ter to determine if the modularization unit returns the expected value.

� ATC Result Browser

ABAP Test Cockpit is a new integrated tool for quality checking of the ABAP

repository objects and is available as of SAP NetWeaver 7.0 EHP 2 Support Pac-

kage 2. The ATC Result Browser displays the findings of the ABAP Test Cockpit

quality check run. The ATC Result Browser is integrated in Object Navigator, and

it is used by the developer to resolve the issues reported in the ATC findings.

The active ATC result is marked with a lightbulb icon and should be used by the

developer to resolve the issues with the ABAP code. The analysis and the correc-

tion features of the ATC findings are displayed in the browser. The ATC browser

opens with a Quick Filter option, and you can specify the filter criteria to filter

the ATC findings. You can filter the objects for which you are the responsible

developer and work on the list to resolve the issues with the code; you also have

the option to specify the Advance Filter option and can switch between the

Advance and Quick Filter options by clicking on the Switch Filter push button.

You can double-click on the message in the browser to display the details and

edit the program to resolve the reported issues or apply for exemption.

The ABAP Test Cockpit is integrated with the ABAP development tools as well as

ABAP Workbench, and can be used by developers to check their code or the con-

tent of the development package before migration of the code to the quality or

Chapter 4 ABAP Workbench Usage82
test system. The ATC can be set up to check the content of the transport request

automatically upon release of the transport request.

The ABAP Test Cockpit is a good tool for ABAP quality management and can be

used by the quality assurance team to check the quality of the ABAP programs

in the ABAP consolidation system or the test or quality system. Typically, your

consolidation or quality system is the ATC Master system, in which you per-

form testing and quality checks. The ATC central check run can be performed

from the ATC administration, Transaction ATC in the ATC Master system.

The quality manager schedules the regular central ATC check run in the ATC

Master system to catch the problems with the ABAP repository objects. The

quality manager then designates the ATC result as the active result and pub-

lishes it to the development system. The published result from central ATC

quality check run will appear in the ATC Result Browser, and the developer

should work on the active result to resolve the problem with the ABAP reposi-

tory objects or request for exemptions.

ABAP Test Cockpit is also used to check functional correctness and performance

optimization potential for SAP HANA migration.

Other browsers such as the Repository Browser, the Repository Information Sys-

tem, the Enhancement Information System, and the Transport Organizer are dis-

cussed in detail in the following sections.

Repository Browser

The Repository Browser is one of the menu options in the Object Navigator and is

started by default when you execute the Object Navigator (Transaction SE80). You

can create and edit repository objects in the Repository Browser. The Repository

Browser is the central and most commonly used tool for managing your develop-

ment objects within the Object Navigator.

When we talk about repository objects, we mean all of the SAP-delivered objects

and customer-developed objects. These repository objects consist of programs,

classes, ABAP Dictionary objects, function modules, screens, menus, and so on.

The object list displayed in the Repository Browser is a hierarchical tree structure.

You can navigate to a repository object by the application hierarchy, whereby you

can list the objects within each of the SAP application components. The objects can

also be listed in a hierarchical tree structure within a package, program, class or

interface, BSP application, Web Dynpro application, local object, and so on.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 4 83
You can display the object from the navigation area by double-clicking on it. The

object will be displayed in the tool area of the object browser in the editor that has

been used to create the object. The ABAP development objects are displayed in the

ABAP Editor, whereas the ABAP Dictionary objects are displayed in the ABAP Dic-

tionary tool. Similarly, you display the screens and the menus in the tool area in

the Screen Painter or Menu Painter by double-clicking on the screen or menu in

the navigation area. You can use the context menus in the navigation area to cre-

ate or edit the object in the application area or package (see Figure 4.3).

Figure 4.3 Repository Browser Navigation Area

You can create or edit repository objects only if you have the appropriate devel-

oper authorization and your user ID has been registered in the SAP Service Market-

place as a developer. You need to provide your developer access key the first time

you create any repository object. You only have to provide the access key once

because the system stores it for you in the table DEVACCESS.

Some of the common context menu functions for repository objects are to check

repository objects, activate an object, copy or rename objects, and change the

Application hierarchy
Package
Program
Function group
Class/interface
Internet services
BSP application
Local objects
Inactive objects

Context menu

Navigate history
Higher-level hierarchy object

Refresh object list

Add/edit favorites

Chapter 4 ABAP Workbench Usage84
package assignment of an object or write the object to the change request. You also

have the where-used list function of the object from the context menu.

Repository Information System

The Repository Information System Browser is used to search for repository

objects in the SAP system. The initial screen of the Repository Information System

displays a hierarchical list of the categories of repository objects in the SAP system

(see Figure 4.4).

Figure 4.4 Repository Information System

The Repository Information System has a selection screen to provide the search

criteria for the repository objects. You can search for repository objects within a

package or search for ABAP Dictionary objects or programs by specifying the

search criteria on the selection screen. Figure 4.5 displays the Repository selection

screen for database tables within ABAP Dictionary objects.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 4 85
You can access the selection screen for the repository object by double-clicking on

the type of repository object in the object navigation area; the selection screen rel-

evant for the object will then be displayed in the tool area of the Object Navigator.

Figure 4.5 Repository Selection Screen for ABAP Dictionary Objects

You can customize the selection screen of the Repository Information System by

selecting Edit • Settings from the initial screen of the Repository Information Sys-

tem Browser. You can specify in the customization if you want to see the default

selection screen or the screen with all of the available selection criteria. You can

also display all of the selection criteria for the object by clicking on the icon on

the application toolbar.

You can specify the search criteria for the repository object in the selection screen

and execute. The system displays the search results in the tool area of the Object

Navigator. You can also select the object from the search result and display the

where-used list of the object if required, and you can double-click on it to look at

the object itself in the appropriate tool.

The Repository Information System is a useful tool to display the available

enhancements within the SAP system. You can search for both the definition and

Chapter 4 ABAP Workbench Usage86
the implementations of the enhancement with this tool. You can filter your selec-

tion of enhancements by application component or package. You can search for

business add-ins, customer exits, enhancement implementations, and enhance-

ment definitions. For a detailed explanation of enhancements and modifications,

refer to Chapter 18.

Workbench Settings

You can configure the ABAP Workbench to change its look and functionality. The

workbench is configured from the menu path Utilities • Settings (see Figure 4.6).

The workbench settings are user-specific and therefore do not affect anyone else

in the system.

Figure 4.6 ABAP Workbench Customization Screen

The Object Navigator can display only eight browser lists at a time. You can unse-

lect the browser selection checkbox for the browsers that you are not going to use

very often.

Within the Workbench settings, you also have the option to configure the ABAP

Editor settings. You can select the new Front-End Editor, the old Front-End Editor,

or the standard Back-End Editor and customize its settings. You have the option to

set your default ABAP Debugger to either the classic or new ABAP Debugger. You
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 4 87
can change your pretty printer settings, split screen settings, and the pattern set-

tings. You can maintain the settings for the Class Builder, Screen Painter, Menu

Painter, Function Builder, Repository Information System, Data Browser, Internet

Transaction Server, Business Server Pages, Web Dynpro, Transport Organizer, SAP-

script, eCATT, and proxy generation from the Workbench settings as well.

ABAP Editor and Workbench Settings

There are three different modes for the ABAP Editor:

� Front-End Editor (source code mode—new)

� Front-End Editor (plain text mode—old)

� Back-End Editor (line-based mode)

The three editors are fully compatible and interchangeable. The source code cre-

ated in one editor can be viewed by all other modes.

The choice of the editor is based on the user-specific settings made in the ABAP

Workbench. The editor can be configured within the ABAP Editor via the menu

path Utilities • Settings • ABAP Editor (see Figure 4.7).

Figure 4.7 ABAP Editor Customization Screen

Chapter 4 ABAP Workbench Usage88
The Front-End Editor (New) option provides the latest editor and comes with SAP

GUI for Windows 7.0. The new editor is an ActiveX control and is fully integrated

into the SAP NetWeaver 7.0 environment.

The new editor has all of the modern code editing features:

� The left margin of the main screen of the editor displays any bookmarks and

breakpoints. Breakpoints are displayed with a red stop sign, and bookmarks are

displayed as a blue flag in the editor margin. You can set up to nine numbered

bookmarks and an unlimited number of bookmarks that are not numbered on

the editor for fast navigation within the code.

� The editor has a line number margin next to the editor margin, where the line

number is displayed.

� The code changes are marked with a red triangle against the line number.

� The status bar displays the current status of the code.

� The vertical scroll tip provides information about the current scroll position

within the code, current function, class, or method.

� You can split the code editor screen horizontally by double-clicking on the split-

ter line on the vertical scroll bar. You can also just drag the splitter line to split

the editor screen horizontally.

� You can collapse or expand blocks of code such as IF-ENDIF or CASE-ENDCASE.

� The status bar of the editor displays the current status of (CapsLock) and (NumLock)

and the line number of the cursor position. (CapsLock) and (NumLock) can be

changed by double-clicking on them. Double-clicking on the line number dis-

plays the Go to Line dialog.

� The Front-End Editor has two types of context menu; the context menu options

depend on the area selected for the context. The margin context menu is dis-

played by right-clicking on the left margin and has the option to set break-

points, delete breakpoints, set bookmarks, clear bookmarks, or navigate to a

bookmark (see Figure 4.8).

Figure 4.8 Margin Context Menu
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 4 89
The context menu in the editing area displays the menu options for the ABAP

code. The editing area context menu has various formatting, editing, and naviga-

tion options (see Figure 4.9).

Figure 4.9 Context Menu for Text Formatting

� The editor provides code hints at runtime as you type by suggesting keyword

hints, block templates, and so on. You can accept the code hint by pressing the

(Tab) key or insert a block template by pressing (Ctrl) + (Enter). Furthermore,

the editor supports WYSIWYG export functionality and exports to HTML, PDF,

and RTF formats.

� The new ABAP Editor is a fully integrated development environment (IDE) for

ABAP programming. It supports syntax highlighting, outlining language struc-

tures, real-time code hints, and auto-completion of language structures.

� With the new code editor you can customize the highlighting for the keyword,

strings, and comments. You can customize the font, color, and size for ABAP

keywords and comments. Similarly, you can customize font, color, and size for

strings, breakpoints, and other display items in the code editor (see Figure 4.10).

Chapter 4 ABAP Workbench Usage90
Figure 4.10 Code Editor Customization for Color Schemas

� You can customize the display settings of your editor. Figure 4.11 shows the dis-

play customization screen. The display and the word wrap options can be

switched on or off according to your preference.

Figure 4.11 Display Customization for the Editor
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 4 91
� Code completion has been added to new the ABAP Front-End edition in SAP

NetWeaver 7.0 EHP 2. The tool proposes appropriate ABAP words and operands

for where you are in your code. To insert the proposed text, press (Ctrl)+

(Space).

� The other feature that’s new in SAP NetWeaver 7.0 EHP 2 is that with the new

code-based view in the ABAP Editor, you can toggle between the classic form-

based view in Class Builder and the new code-based view. This new view allows

you to see a global class’s whole code, such as a program in the ABAP Editor, and

you can edit the code. When you save, the modified source code is then split

among the corresponding include programs.

� Finally, you can customize the code completion options for the editor. This

option allows you to complete the available keyword from the dictionary or

complete the class, method, or variable name within the scope of the visibility.

ABAP Workbench Tools in Detail

With the Object Navigator, you work directly with the repository object. The rele-

vant tool for the repository object is automatically selected when you double-click

on the repository object. The SAPscript Editor, Smart Forms Editor, and Customer

Enhancement Projects are some of the development tools that are not available

within the Object Navigator. The following are the most commonly used ABAP

Workbench development tools:

� ABAP Editor

The ABAP Editor is used to develop programs and can be executed via Transac-

tion SE38. You use the editor to write ABAP programs.

� Class Builder

The Class Builder allows you to create ABAP classes within the ABAP Work-

bench. You can create ABAP classes and interfaces, implement inheritance rela-

tionships, and create attributes, methods, and events for the global classes and

interfaces that you build. You can access the Class Builder via Transaction SE24.

� Function Builder

You use the Function Builder to write function modules and define function

groups within the ABAP Workbench. You use the Function Builder to create,

change, display, and test function modules. You can access the Function Builder

directly via Transaction SE37.

Chapter 4 ABAP Workbench Usage92
� Screen Painter

The Screen Painter is an ABAP Workbench tool used to create screens for SAP

GUI transactions. You use the Screen Painter to create screens and write the

flow logic for screens. You can access the Screen Painter via Transaction SE51.

The Screen Painter layout editor used to design the screen has two versions: the

alphanumeric layout editor and the graphic layout editor. By default, the Screen

Painter layout editor is alphanumeric, but the mode can be changed to the

graphical layout editor by changing the Screen Painter setting by following the

menu path Utilities • Screen Painter and selecting Graphical Layout Editor.

You define the screen attributes and the screen field attributes for the screen

fields and the flow logic using the Screen Painter. You can create tab strips, table

controls, subscreens, custom containers, and other screen elements using the

Screen Painter.

� Menu Painter

The Menu Painter is an ABAP Workbench tool to create the user interface for

your program or transaction. You can create the menu bar, standard toolbar,

application toolbar, and GUI title using the Menu Painter. You also assign the

function keys to the functions you create in the Menu Painter. You can execute

the Menu Painter outside the ABAP Workbench via Transaction SE41.

� ABAP Dictionary

The ABAP Dictionary tool is an integral part of the ABAP Workbench. The ABAP

Dictionary is used to create, change, and display transparent tables, pooled and

cluster tables, views, types, domains, data elements, structures, table types,

search helps, and lock objects. The database utility is also an integral part of the

ABAP Dictionary tool. You can directly access the ABAP Dictionary tool outside

the ABAP Workbench via Transaction SE11.

� Web Application Builder

You can build web applications within the ABAP Workbench. The ABAP Work-

bench delivers the tool to develop ITS web applications or BSP applications.

– ITS was the first approach by SAP to extend business applications to web

browsers by converting the SAP Dynpro screen into HTML format, making it

possible to access SAP transactions via web browsers. For ITS applications

you can create Internet services for existing SAP transactions, HTML tem-

plates for the transaction screens, and MIME objects to add icons and graph-

ics to the web screen layout.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 4 93
– You can also develop BSP applications with the Web Application Builder. You

can design your web page for the BSP application using HTML and ABAP or

Java Scripting language. You can define the page flow and implement the

event handler with ABAP with the Web Application Builder for BSP. The Web

Application Builder also allows you to define the theme for your layout and

integrate the MIME objects into the web application.

� Web Dynpro Explorer

The workbench has a tool for development of Web Dynpro ABAP applications

(as of SAP NetWeaver 7.0). The tool consists of the runtime environment and

the graphical tool to design the Web Dynpro views within the ABAP develop-

ment environment.

Enhancement Information System

The Enhancement Information System provides an overview of the defined

enhancements and the enhancement implementations within the Enhancement

Framework. The Enhancement Framework is the technical basis for SAP’s

enhancement concept (for detailed information, refer to Chapter 18). It enables

you to see the enhancement definitions and implementations in the system.

The Enhancement Information System is a tree display structure for enhancement

definitions and enhancement implementations. The enhancement element defi-

nition is displayed under the enhancement spot definition, which in turn is dis-

played under the composite enhancement spot. Similarly, the enhancement

element implementation is displayed under the simple enhancement implemen-

tation, which in turn is displayed under the composite enhancement implementa-

tion. The enhancement implementation node is not displayed if the enhancement

has not been implemented. Also, it is not necessary that all enhancement spot

definitions or implementations are assigned to a composite enhancement defini-

tion. Enhancement definitions and implementations are discussed in detail in

Chapter 18.

You can filter the display of the enhancements within the Enhancement Informa-

tion System. You have the option to display any or all of the following: the com-

posite enhancement, enhancement spot, enhancement implementation, or

composite enhancement implementation within the Enhancement Information

System (see Figure 4.12).

Chapter 4 ABAP Workbench Usage94
Figure 4.12 Enhancement Information System Navigation Screen

The enhancement spot definition can be displayed in the ABAP Workbench tool

area by double-clicking on the enhancement spot definition in the navigation

area. Figure 4.13 displays the Enhancement Spot definition screen in the tool area.

Figure 4.13 Enhancement Spot Definition Screen

Enhancement
Enhancement implementation
Composite enhancement implementation
Enhancement spot
Composite enhancement spot

Composite enhancement implementation

Enhancement spot implementation

Composite enhancement definition

Enhancement spot definition
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 4 95
Similarly, you can display the Enhancement Implementation screen in the tool area

of the ABAP Workbench by double-clicking on the enhancement spot implemen-

tation (see Figure 4.14).

Figure 4.14 Enhancement Spot Implementation Screen

Packages and Their Attributes

Prior to release 4.6C, all ABAP development objects were assigned to development

classes that were used to group related development objects. Packages were

assigned to the application components. There can be multiple packages for an

application component. As of release 4.6C and beyond, all ABAP development

objects are to be assigned to the package. Packages are containers for the develop-

ment objects within the transport layer that allow the objects to be transported.

You can create or edit packages in the Package Builder in the Repository Browser.

You can display all of the objects assigned to the package in the Repository Brow-

ser by selecting a package for the object list type. The SAP system has a predefined

package ($TMP) to which all of the local development objects are assigned. Local

objects assigned to the $TMP package cannot be transported. Nontransportable

package names start with $.

The Package Builder can also be accessed via Transaction SE21 or SPACKAGE. The

Package Builder is used to create and assign attributes to packages.

To create a package for your development project, you can create a main package

and the subpackage, specify the package hierarchy, define the package interface,

add elements to the package interface, and then define the use access for the pack-

age user. You create main packages only if you want to create a package hierarchy.

Normally you create a package and specify the package type as Not a Main Package.

You create the package from the Repository Browser (see Figure 4.15).

Chapter 4 ABAP Workbench Usage96
Figure 4.15 Create Package Screen

You specify the package name, short description, application component, soft-

ware component, transport layer, and package type and then click on the Create

Package icon. Customer package names should start with the letter Z or Y. The

software component for a customer package is always HOME. The transport layer

determines if the object assigned to the package is local or transportable. Nor-

mally, you carry out all of your development activity in the development system

and then move your objects to the quality assurance system and the production

system. Your system administration team will set up a transport layer for your

development system, for which the transport route is defined to move the object

from one system to another. Based on the transport layer, the objects assigned to

the package are moved to the different systems defined in the transport route for

the transport layer.

You can specify the package properties, use access, interface, and package hierar-

chy in the Package Builder screen in change mode. However, you are not required

to specify the package interface or use access unless you want to protect the object

assigned to the package from being used arbitrarily by other packages. Figure 4.16

displays the Package Builder screen where you can specify the package attributes.

Packages have attributes such as nesting, package interfaces, visibility, and use

access.

� Nesting allows you to embed packages in other packages, thus allowing you to

split larger units of repository objects and structure them in a hierarchy.

� Visibility is a property of the package element. Elements within the package are

visible to all other elements within the same package and are always invisible to

the elements outside of the subpackage.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 4 97
� Elements within a package can be made visible outside the package by defining

a package interface.

� Use access is the right of one package to use the visible elements of the other

package interface.

Figure 4.16 Package Builder Screen for Package Attributes

Packages use interfaces and visibility to make their elements visible to other pack-

ages. All visible elements of a package can be used by the other package. Use access

restricts the use of the visible elements of the package. The visible elements of the

provider package can only be used by the package if the use access of the interface

has been created in the package (see Figure 4.17).

Package interface and visibility are useful if you want to make an element of your

subpackage visible to the higher-level package or main package.

The system checks that your package complies with these rules based on the entry

in the table PAKPARAM. The package check is switched off by default in the customer

system. The entry GLOBAL_SWITCH for the key field NAME in the table PAKPARAM con-

trols the behavior of the package check. By default, the GLOBAL_SWITCH key is set to

OFF in the table PARPARAM. To switch on package check, set the GLOBAL_SWITCH key

to RESTRICTED or R3ENTERPRISE.

Chapter 4 ABAP Workbench Usage98
Figure 4.17 Package Structure in Object Navigator of ABAP Workbench

Table 4.1 displays the values for GLOBAL_SWITCH and their effects on package check.

Value Behavior

RESTRICTED The package check is only performed if you have selected the Package

Check as Client or Package Check as Server Attribute in the package.

R3ENTERPRISE The same checks that are performed for entry RESTRICTED are per-

formed here. With objects belonging to structure packages, an addi-

tional check is performed to determine whether use access has been

defined between them.

Note that in this case an additional entry has to be made in the table

PAKPARAM with the key field NAME equal to SAP_DEV_SYSTEM and

VALUE set to X.

OFF Switches off package check.

Table 4.1 Valid Values for Package Check

Package

Embedded package

Package interface
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 4 99
Transport Organizer

The Change and Transport System (CTS) provides you with a tool to organize your

ABAP Workbench, cross-client customization, and customization work and then

transport the changes through your system landscape. The CTS records all of the

changes in the change request. The change request is also referred to as the trans-

port request. You can release your task and the change request once you have

completed and tested your development. You have to ensure that your develop-

ment object is syntactically correct and active before you release the change

request. The change request is then used to transport the changes to other systems

or clients based on the transport route.

Repository objects and cross-client customizations are assigned to a workbench

request, whereas the client-specific customization objects are assigned to a Custo-

mizing request. Each change request can have one or multiple tasks, and the repos-

itory objects or the customization objects are assigned to one of these tasks. The

task is assigned to a user, and only the owner of the task can record his changes to

the task.

There are two types of workbench tasks: development/correction and repair tasks.

The repository object changes are recorded in the development/correction task if

the current system is the original system of the object. The object is recorded in

the repair task if the current system is not the original system of the object. All SAP

standard object modifications are recorded in the repair task of the workbench

request. Figure 4.18 displays the change request structure. The top level is the

change request, and the lower-level number is the task of the change request.

Figure 4.18 Transport Request Structure

Each repository object is assigned to a package, and the package is assigned to the

transport layer. If the route for the transport layer is defined in the Transport

Management System (TMS), then the object recorded in the transport task is trans-

portable; otherwise, the task belongs to the local change request.

The system administration team creates the transport layer in the TMS to trans-

port the objects in your system landscape. The transport layer is assigned to the

Chapter 4 ABAP Workbench Usage100
development system. The administration team needs to set up a transport route

after creating the transport layer.

There are two types of transport routes: Your administration team will set up the

consolidation route for each transport layer and then the delivery route. The

development system is the source system for the consolidation route, and the

quality assurance system is the target system. You define the delivery route to

transport the objects from the quality system to the other target system, which

can be production and other training systems. So once the object is imported to

the quality system, you need delivery routes to transport the objects from the

quality system to other systems.

The Transport Organizer is integrated with the Object Navigator or can be accessed

via Transaction SE10. You can display the transport request and the associated

tasks of the request from the workbench by double-clicking on the request in the

navigation area of the workbench. The request will be displayed in the tool area,

whereby you can display the properties, objects, and documentation of the

request. The request editor displays all of the recorded changes within the request

(see Figure 4.19).

Figure 4.19 Request Editor in ABAP Workbench

You can create change requests by creating the repository object. When you are

creating the repository object, a dialog window appears to allow you to create a
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 4 101
new request or assign the object to an existing request. The transport attributes

are populated automatically based on the attributes of the repository object.

Figure 4.20 displays the initial transport request screen.

Figure 4.20 Transport Request Screen

You can also create the transport request from the transport organizer, but you

have to populate the transport attributes on your own. You release all of the tasks

within the change request and then the change request itself to transport the

objects through your system landscape. The system administrator imports the

objects to the target system. You can display the transport log by selecting the

transport log menu option.

The Transport Organizer tools are integrated with the Transport Organizer. They

are a set of programs that help you work with the Transport Organizer. You can

start the tool from the initial screen of the Transport Organizer via the menu path

Goto • Transport Organizer Tools (see Figure 4.21).

Figure 4.21 Transport Organizer Tools

Chapter 4 ABAP Workbench Usage102
The tools can be used to search for objects in transport requests or include objects

in the transport requests. You can search the request or task based on different

search criteria. Similarly, you can display all of the modifications in the customer

system using the modification browser.

Practice Questions

These practice questions will help you evaluate your understanding of the topic.

The questions shown are similar in nature to those found on the certification

examination. Although none of these questions will be found on the exam itself,

they allow you to review your knowledge of the subject. Select the correct answers

and then check the completeness of your answers in the following solution sec-

tion. Remember that you must select all correct answers and only correct answers

on the exam to receive credit for the question.

1. The Object Navigator incorporates a total of 11 browsers.

� A. True

� B. False

2. The Repository Browser is started by default when you execute Transaction

SE80 for the Object Navigator.

� A. True

� B. False

3. You can list a maximum of six browsers in the Object Navigator.

� A. True

� B. False

4. You can maintain SAPscript forms and SAP Smart Forms within the ABAP

Workbench.

� A. True

� B. False
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Practice Questions Chapter 4 103
5. The Repository Information System is a useful tool to search for customer

exits/function exits and BAdIs in the SAP system.

� A. True

� B. False

6. Which of the following statements about the Object Navigator are true? Select

all that apply.

� A. ABAP programs can be displayed and edited in the Object Navigator.

� B. Screens can be displayed and edited in the Object Navigator.

� C. Menus can be displayed and edited in the Object Navigator.

� D. You can create BAdI implementations in the Object Navigator.

� E. You can create customer projects (Transaction CMOD) in the Object Navi-

gator.

� F. The ABAP Dictionary can be maintained in the Object Navigator.

7. Enhancement definitions and implementations can be displayed in the

Enhancement Information System.

� A. True

� B. False

8. Which of the following is a true statement? Select all that apply.

� A. All customer repository objects have to be assigned to a package.

� B. Packages use interfaces and visibility to make their elements visible to

other packages.

� C. The transport layer is a mandatory input field for the package.

� D. A package can be nested.

9. The software component for a customer package can be...

� A. HOME

� B. Any SAP software component (i.e., SAP_APPL, SAP_BASIS, SAP_HR, etc.)

Chapter 4 ABAP Workbench Usage104
10. Which of the following is a true statement? Select all that apply.

� A. All transportable objects have to be assigned to a package.

� B. Local repository objects can be transported.

� C. Repository objects and cross-client customization objects are assigned to

the workbench request.

� D. Client-specific customization objects are assigned to the customizing

request.

� E. Inactive objects can be transported.

11. Which of the following is true? Select all that apply.

� A. The repository objects and cross-client customization objects are recorded

in a task belonging to a local change request if there is no consolidation route

leading from the current system defined in the Transport Management Sys-

tem for the transport layer.

� B. The repository objects and the cross-client customization are recorded in a

task belonging to the transportable request if the consolidation route is

defined in the Transport Management System.

12. There are ____ versions of the ABAP Editor.

� A. 3

� B. 4

� C. 2

13. Repository objects are client-specific.

� A. True

� B. False

14. ABAP Unit Test Browser is included in Object Navigator with SAP NetWeaver

7.0 EHP 2.

� A. True

� B. False
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Practice Question Answers and Explanations Chapter 4 105
Practice Question Answers and Explanations

1. Correct answer: A

The Object Navigator has a total of 11 browsers, as an additional ABAP Unit

Browser has been added in SAP NetWeaver 7.0 EHP 2. In earlier releases, it was

nine. The following are the object browsers available in the ABAP Workbench:

– Repository Browser

– Repository Information System

– Transport Organizer

– MIME Repository

– Tag Browser

– Test Repository

– Enterprise Service Browser

– Web Dynpro Text Browser

– Enhancement Information System

– ABAP Unit Browser

– ABAP Test Cockpit

2. Correct answer: A

The Repository Browser is the default browser for the ABAP Workbench.

3. Correct answer: B

You can display up to eight browsers in the ABAP Workbench.

4. Correct answer: B

You cannot maintain SAPscript forms or SAP Smart Forms in the ABAP Work-

bench.

5. Correct answer: A

You can search for enhancements including business add-ins and customer

exits with the Repository Information System.

6. Correct answers: A, B, C, F

You can edit or display ABAP programs in the ABAP Workbench in the ABAP

Editor. You can display or edit screens within the ABAP Workbench in the

Screen Painter. You can display and edit menus within the ABAP Workbench in

the Menu Painter. The BAdI implementation tool is not integrated within the

Object Navigator, so it’s not possible to create BAdI implementations in the

Object Navigator. The customer project (CMOD) is not integrated within the

ABAP Workbench, so it’s not possible to create customer projects with the ABAP

Chapter 4 ABAP Workbench Usage106
Workbench. The ABAP Dictionary is integrated within the ABAP Workbench, so

it can be maintained in ABAP Workbench.

7. Correct answer: A

Enhancement definitions and implementations can be displayed in the

Enhancement Information System.

8. Correct answers: A, B, D

You can create a local object and assign it to package $TMP, but you have to

assign the object to a package (whose name does not start with ‘$’) if you want

to transport the object from one system to another. A package has to define a

package interface and visibility to make its elements visible to other packages.

The transport layer is not a mandatory input field for the package. The trans-

port layer is assigned to the package if it is defined for the system. A package can

be nested.

9. Correct answer: A

The software component of the customer package should always be HOME.

10. Correct answers: A, C, D

The repository object has to be assigned to the package to transport the object

to another system within the system landscape. You cannot transport a local

repository object. Repository objects and cross-client customization objects are

assigned to a workbench request. Client-specific customization objects are

assigned to the customization request and are not assigned to the package.

Inactive objects can be transported.

11. Correct answers: A, B

A local change request is created if the consolidation route is not defined; oth-

erwise, a transportable change request is created if the consolidation route for

the transport layer is defined.

12. Correct answer: A

There are three modes of ABAP Editor: the new Front-End Editor, the old Front-

End Editor, and the Back-End Editor.

13. Correct answer: B

Repository objects are cross-client objects, and therefore they are system wide.

14. Correct answer: A

ABAP Unit Test Browser is the new tool in Object Navigator in SAP NetWeaver

7.0 EHP 2.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Takeaway Chapter 4 107
Takeaway

You should now understand the ABAP Workbench features and be able to navigate

within it. You should be able to use the available browsers within the ABAP Work-

bench and complete your development in an efficient manner. You should know

how to configure the ABAP Workbench and the various development tools.

To be a successful developer, you should know about all the available develop-

ment tools and their uses. It is important to understand the features of the new

ABAP Editor because it will be very helpful for your application development and

will increase the productivity of your development team.

Finally, you should understand the package concept and the use of the Transport

Organizer. You should understand the concept of the transport request and the

different types of transport request and their use for the migration of develop-

ment objects from the development environment to the production environ-

ment.

Refresher

Table 4.2 shows key concepts about the ABAP Workbench.

Key Concept Definition

ABAP Workbench The ABAP Workbench is an integrated development envi-

ronment for the ABAP developer.

Repository Browser The Repository Browser is a tool within the Object Navigator

and is used by the developer to access the repository objects

and workbench tools to create repository objects.

Repository Information

System Browser

The Repository Information System Browser is a search tool

to search for repository objects.

Enhancement Information

System

The Enhancement Information System is a tool to search for

enhancement definitions and implementations in the SAP

system.

Transport Organizer The Transport Organizer is a tool to work with the change

request and the objects within the change request. Using

this tool, you can view the objects assigned to the change

request and the transport log of the request.

Table 4.2 Key Concept Refresher

Chapter 4 ABAP Workbench Usage108
In this chapter we covered the ABAP Workbench and its use in detail. We covered

some of the most commonly used browsers such as the Repository Browser,

Repository Information System, Enhancement Information System, and Trans-

port Organizer. Furthermore, we discussed the ABAP Workbench, the new ABAP

Editor, and the concepts of package and transport requests in detail. This knowl-

edge will allow you to easily pass this topic on the certification examination.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Chapter 5

ABAP Debugger Program
Usage

Techniques You’ll Master:

� Examine the runtime behavior of ABAP programs using the

ABAP Debugger

� Use the ABAP Debugger to systematically test ABAP programs

� Plan correctness of your ABAP programs

� Use watchpoints, breakpoints, assertions, and checkpoint

groups effectively

� Understand the design differences between the two versions of

the Debugger

Chapter 5 ABAP Debugger Program Usage110
A debugger is typically a major component of every development environment.

During the development of applications, either simple or complex, the Debugger

is a valuable tool in detecting and analyzing error situations. You need to be famil-

iar with the functional scope of the ABAP Debugger, and this chapter covers the

most important concepts of this very useful tool. It is a tool used during develop-

ment, during testing, and when attempting to analyze problems in the production

system.

We will cover the primary differences between the old “classic” Debugger that has

existed since SAP R/3 and the new Debugger, first available in a limited form in

version 6.40 and then completely in SAP NetWeaver 7.0. We will also cover a num-

ber of the tools available in the new Debugger and the user interface. Also covered

will be customizing the Debugger to meet your needs and preferences, assertions,

watchpoints, and breakpoints. Each of these topics will be covered separately, and

they will be followed by practice questions and answers.

Real-World Scenario

A report currently in use in production does not produce correct results. This

program was developed by a programmer who is no longer with the com-

pany, and there is no documentation.

Sometimes an error message is produced in production that cannot be

reproduced in any of the other systems in the landscape, and no one is sure

what is causing the message. You have been told to identify why the message

is being produced and to correct the report.

After examining the program in the ABAP Editor, you are still unable to

determine the cause of the problem. The report does a number of dynamic

calls based on values read from database tables and performs some routines

based on the user’s authorization checks.

The solution to quickly identifying what the program is doing is to use the

ABAP Debugger in the production system. To identify where the error mes-

sage is being produced, you create breakpoints on the statement MESSAGE.

Once the message statement that is producing the unknown error is identi-

fied, the cause of the error can be easily deduced. It is also possible to exam-

ine variables to determine the actual flow of the program and then identify

why the results are incorrect.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 5 111
Objectives of this Portion of the Test

The purpose of this portion of the certification examination is to verify that you

have detailed knowledge of the ABAP Debugger, which is a major component of

the environment. By verifying that you have the appropriate knowledge to use the

Debugger efficiently, you will become a more effective and efficient programmer.

This portion of the examination will test your knowledge of the Debugger. The

topics that you need to understand from this section include the following:

� Various ways to start the Debugger

� Breakpoints

� Watchpoints

� Assertions

� Viewing and modifying data objects

� Understanding the architecture of the Debugger

Key Concepts Refresher

The ABAP Debugger is part of the ABAP Workbench that you use either as an inte-

grated testing tool or to identify issues with code execution. The Debugger allows

you to execute ABAP programs by line or by section. With this tool, you can dis-

play data objects and check the flow logic of programs. The running program is

interrupted after each step, allowing you to check its processing logic and the

results of individual statements.

You typically use the Debugger as a way of identifying errors in ABAP programs. It

contains the following functions:

� Different ways of starting the Debugger

� Different views of contents of data objects

� Different execution options

� Displaying source code in the Debugger

� Setting and deleting breakpoints

� Setting and deleting watchpoints

� Setting and deleting database locks

� Stopping code execution at a particular statement or event

� Displaying and changing field contents at runtime

� Displaying objects and references

Chapter 5 ABAP Debugger Program Usage112
� Displaying and positioning strings

� Opening the code in the ABAP Editor or Object Navigator

New and Classic Debugger

Currently, you have access to two versions of the ABAP Debugger. The older ver-

sion (commonly called the classic Debugger), which has existed since the begin-

ning of SAP R/3, has always had the majority of the functions listed here. As the

language has evolved, the Debugger has also evolved (for example, the inclusion

of objects in both ABAP and the Debugger). Figure 5.1 shows the flow control area,

and Figure 5.2 shows the variable display area of the classic Debugger.

Figure 5.1 Standard Flow Control of the Classic Debugger

Figure 5.2 Variable Display of the Classic Debugger

The original Debugger has always had certain limitations: The layout is mostly

fixed, and there were restrictions on the amount of data that could be displayed at

one time. For example, a maximum of eight data objects could be displayed, and

of those, only four at a time. Only one internal table could be displayed, and table

scrolling, especially horizontally, was often tedious. While it is possible to reorder

columns, knowledge of the fields of the internal table was necessary to complete

this task. Other areas also required detailed knowledge of the executing code.

There is no way, from within the Debugger, to look up a function module, method,

or subroutine name within the repository to set a breakpoint.

The classic Debugger shared the same external mode roll area of the code being

debugged. (This external mode corresponds to the session window in which you
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 5 113
are running the code.) This restricted the amount of interaction the Debugger had

with the repository or the system as a whole without impacting the code being

debugged. Each of the Debugger’s actions could influence the program flow of the

application and was limited as a result.

Also, with the classic Debugger, it is generally not possible to analyze programs in

debugging mode that run in an ABAP processor unit and are called recursively

from a subordinate unit. For example, a conversion exit cannot be analyzed using

this Debugger if it runs within a WRITE statement. A conversion exit executes

whenever it is sent to the presentation or retrieved from the presentation layer. If

called from a WRITE statement, the Debugger is called recursively from within

itself.

Starting with SAP NetWeaver 6.40, SAP released a new version of the Debugger.

The Debugger available in release 6.40 was not considered complete (and was not

the default debugger as a result); it did eliminate these restrictions.

The reason for this is that the new Debugger executes in its own external mode.

This allows the code to be analyzed to run with virtually no impact from the

Debugger. This separation of functionality allows for much greater interaction

with the system, allowing search help use, the display of more than one internal

table simultaneously, and an unlimited number of data objects.

The Debugger that is specified as the default starts when needed. You can change

the default, in either the ABAP Editor (Transaction SE38) or the Object Navigator

(Transaction SE80), by following the menu path Utilities • Settings • ABAP Editor •

Debugging. Figure 5.3 and Figure 5.4 show the menu and resulting dialog box. Both

Debuggers are started in exactly the same way.

Figure 5.3 Menu Path To Set the Default Debugger

Chapter 5 ABAP Debugger Program Usage114
Figure 5.4 Dialog to Set the Default Debugger

The following are the primary methods of starting the Debugger:

1. In the navigation area, select the menu path Execute • Debugging for the

selected program, as shown in Figure 5.5.

Figure 5.5 Navigation Start of the Debugger

2. In the editing area, select the desired program line and select Set/Delete Break-

point. Then start the program by selecting (Execute) Direct Processing or press-

ing (F8).
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 5 115
3. Select System • Utilities • Debug ABAP or System • Utilities • Debug Screen.

4. Enter “/h” in the command field in the standard toolbar and press (Enter) or use

a shortcut to provide the command to the session.

However, each time the new Debugger is started, a new mode is started automati-

cally. You have a maximum of six external modes available as a default, though

your system may be configured differently. If no further external mode is avail-

able when the new Debugger is started, the message No additional external mode

for new ABAP debugger available is displayed, the new Debugger start is cancelled,

and the classic Debugger is started in its place. In this case, you should close modes

that are no longer required.

In the new Debugger, control can be passed from the application to the new

Debugger at any time using the function code “/h”, even if the Debugger was

already started.

You can exit the new Debugger with one of several methods:

� If the Debugger is ready for input (active) and the application is waiting, you can

select Debugger • Exit Debugger, which closes just the Debugger, and the appli-

cation continues to run.

� You can select Debugger • Exit Application and Debugger, which closes both the

Debugger and the application.

� The third option is if the application is ready for input and the Debugger is wait-

ing, in which case you can enter “/hx” in the command field and press (Enter),

which closes just the Debugger and allows the application to continue to run.

It is possible to switch between the classic Debugger and the new Debugger by

selecting Debugger • Switch to New ABAP Debugger or Debugger • Switch to Classic

ABAP Debugger. You must be aware, however, that if you switch from the new

Debugger to the classic Debugger when the ABAP code is called from the kernel of

the application server (primarily conversion and field exits), the runtime error

RPERF_ILLEGAL_STATEMENT will be triggered as a result of the recursive call.

You will find the functions for analyzing source code similar between versions of

the Debugger. It is possible to navigate from the variable overview to the detailed

view of the data object simply by double-clicking. The difference with the new

Debugger is simply that you can process an unlimited number of data objects

simultaneously, and the number visible at a single time depends on the size of the

window and the font size. You also need to double-click on the Change (pencil)

Chapter 5 ABAP Debugger Program Usage116
icon to open up the data object for change and then press (Enter) to confirm the

change, unlike the classic Debugger, where the field was always open and you

needed to click on the Change icon to accept the change.

New Debugger Tools and UI

As soon as you start the new Debugger, using one of the methods shown in the

previous note (from a menu, with a breakpoint, or with the command “/h”), you

will see the message Session x connected to Debugger in the status line of the appli-

cation, where X is the number of the current external mode. When the Debugger

starts, you will see the window title (x) – ABAP Debugger Controls Session x (Exclu-

sive), where again X is the external mode of the application. This provides a visible

link between application and Debugger mode at all times. If it is not possible to

achieve an exclusive mode, the title will be (x) – ABAP Debugger Controls Session x

(NOT Exclusive).

If the Debugger obtains an exclusive mode, it means that the application to be ana-

lyzed exclusively occupies a work process of the application server during debug-

ging. If all exclusive debugging work processes are occupied, the Debugger is

switched to non-exclusive mode. In this state, you can attempt to occupy a work

process exclusively by selecting Debugger • Exclusive Debugging Mode On (shown

in Figure 5.6). However, this is only possible if another exclusive debugging work

process has become available in the meantime.

Figure 5.6 Menu to Turn Exclusive Mode On
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 5 117
Tip

The difference between exclusive and non-exclusive modes is that you will find

the Debugger function limited in non-exclusive mode. The limitations are mostly

due to the fact that a roll-out is forced in the application after each Debugger view

while in non-exclusive mode. Therefore, a database commit must be executed.

This has the following consequences:

� It is not possible for you to debug between the statements SELECT and ENDSE-
LECT because the database cursor needs to be closed using a commit. In this

case, program execution is terminated.

� Debugging mode is not possible for conversion or field exits.

� Owing to the commit, inconsistent datasets can occur in the database.

Because inconsistent datasets in the database are possible, the non-exclusive

mode is impossible in productive systems. If the number of exclusive debugging

work processes is occupied, the runtime error DEBUGGING_NOT_POSSIBLE is trig-

gered whenever you attempt to start another Debugger.

The number of work processes that are available exclusively for debugging is

defined by the profile parameter rdisp/wpdbug_max_no. In development sys-

tems, this should be approximately half the number of dialog work processes.

The special requirements demanded of debugging in a production client are the

same for the new and the classic Debugger. Therefore, they are processed exactly

the same as in the classic Debugger.

You will find 12 work areas, or desktops, when the new Debugger starts. This is an

increase from the previous version in SAP NetWeaver 6.40 because not all of the

tools were complete. You can customize the first three desktops so that they will

start with the Debugger to satisfy your own preferences and eight “predefined”

desktops. You can modify each of these desktops at any time.

Each desktop can hold from one to four tools. The tools displayed on a desktop can

be the same or different, based on your needs at the time. You can change the size

or location of any of these tools while in the Debugger. For example, for tools

placed horizontally, the right or left tool can be either made wider or narrower.

You can make tools with a vertical alignment longer or shorter. Tools can be

swapped vertically, horizontally, or diagonally. You can replace any tool with any

other simply by clicking on the Replace button. An individual tool can be maxi-

mized to fill the entire desktop. You can undo any layout change with the Back but-

ton (or (F3)).

Chapter 5 ABAP Debugger Program Usage118
At this time you can create 23 tools. The tools are grouped into four categories:

Standard Tools, Data Objects, Memory Management, and Special Tools (see Figure

5.7).

Figure 5.7 Tool Dialog

You will see differences between the two source code displays. The Source Code

option shows the code as with the old Front-End Editor. The Source Code (Edit Con-

trol) option uses the new Front-End Editor, which displays additional formatting

and provides information regarding data objects when you hover over the name

with the mouse.

Table 5.1 shows where to find the tools in the new Debugger when it is started

before modification; Figure 5.8 and Figure 5.9 show the desktops.

Tool Initially Found on Desktop

Source Code Not initially found on a desktop

Call Stack Desktop 2 and Standard

Variable Fast Display Desktop 1, Desktop 3, and Standard

Table 5.1 Debugger Tools
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 5 119
Figure 5.8 First Six Desktops

Figure 5.9 Last Six Desktops

Most of the tools also provide additional services. You will always be able to access

the tool services by clicking on the Services of the Tool button as shown in Figure

5.10 or through the context menu of the tool.

Breakpoints Break./Watchpoints

Source Code (Edit Control) Desktop 1, Desktop 2, Desktop 3, and Standard

Object Objects

Table Tables

Structure Structures

Single Field DetailDisplay

Data Explorer Data Explorer

Memory Analysis Not initially found on a desktop

Application-Specific Memory Views Not initially found on a desktop

Memory Object Explorer Not initially found on a desktop

Trace Not initially found on a desktop

Debugger Scripting Script

Web Dynpro Not initially found on a desktop

Loaded Programs (Global Data) Not initially found on a desktop

Screen Analysis Not initially found on a desktop

DiffTool Diff

Display Exception Not initially found on a desktop

System Areas (Internal) Not initially found on a desktop

Console: XML and List Preview Not initially found on a desktop

Script Wrapper Not initially found on a desktop

Tool Initially Found on Desktop

Table 5.1 Debugger Tools (Cont.)

Chapter 5 ABAP Debugger Program Usage120
Figure 5.10 Services of the Tool

The services provided vary depending on the tool. For example, the Source Code

tool only allows you to navigate to the currently executing line or to open the edi-

tor. Most provide the ability to save the contents of the tool to a local file or to

search. The variable fast display provides options for sorting the local or global

data objects or saving the data as test data in Transaction SE37, whereas the inter-

nal table services provide the ability to append, insert, or delete rows in the table.

You have the option to change the sequence of the fields through the service or

just drag them as you would in an ABAP List Viewer (the ALV or, as it has been

renamed, the SAP List Viewer is discussed in Chapter 15) or table control.

All of the tools except the standard tools provide a history of all objects displayed

in the tool, and any prior tool can be retrieved simply by selecting it from the list.

The table tool has many more capabilities than the classic Debugger provided.

Whereas you could handle standard internal tables through the use of the Change,

Insert, Append, and Delete buttons below the table display, keyed tables (sorted or

hashed) were more restricted. With those you only had access to the Change and

Delete buttons to modify the contents of non-key fields or to remove the record.

The new Debugger offers many more options (see Figure 5.11 through Figure 5.14).

Figure 5.11 Context Menu of the Table Tool (Change Table Content)

Figure 5.12 Context Menu of the Table Tool (Columns)
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 5 121
Figure 5.13 Context Menu of the Table Tool (Standard)

Figure 5.14 Table Service Menu

You have multiple ways of modifying the internal table through either the context

menu (right-click on a row containing data) or the service menu of the tool. The

same options exist for a standard internal table, whereas a hashed internal table

does not allow you to insert using an index. If you use the Insert Row (Key) option,

regardless of where you attempt to insert the record for sorted or hashed internal

tables, the row will be inserted in the correct location.

The dialog presented shown in Figure 5.15 allows you to copy the contents of an

existing row to use as a template. The new row is indicated without a numerical

Chapter 5 ABAP Debugger Program Usage122
line number (there is an icon in its place) until you press the (Enter) key to accept

the row into the internal table.

Figure 5.15 Insert Using Key

Using Source Code (Edit Control) provides several advantages over the older Source

Code. First, as in the new editor, you have the same flexibility with settings. You

can define different fonts and colors for keywords, comments, and other types of

items. The display allows for collapsible blocks, word wrap, and other visual feed-

back.

Figure 5.16 shows several of the more important features:

� Older versions of this tool had arrows in the top-left corner—all tools utilized

them—to allow you to resize the tool to different widths or heights. The current

version allows you to resize by dragging the edge of the tool itself.

� On the right side of the tool, the third, fourth, and fifth buttons from the top

allow you to maximize the tool to fill the desktop, maximize the tool to use the

entire height of the desktop, and maximize the width of the tool to the entire

desktop.

� The status bar at the bottom of the tool shows the scope of the line selected, in

this case, within a method and within a LOOP.

� The closest scope to the cursor (in this case, the LOOP keywords) are also made

bold.

� The status bar also shows the line and column of the cursor, and double-clicking

on this box produces the Go To Line dialog box.

� The line to be executed is indicated with a yellow arrow, and hovering over vari-

ables with the mouse produces quick information (tooltip) showing the variable

name, value, and type.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 5 123
Figure 5.16 Source Code (Edit Control) Tool

You can now instruct a breakpoint to skip a number of occurrences before stop-

ping. You simply enter the number of skips in the skip column (any positive num-

ber between 0 and 4,294,967,296 [232]) to prevent the breakpoint from stopping.

You can change a breakpoint to active or inactive or delete the breakpoint. In addi-

tion, you can edit conditional and unconditional checkpoints using the Break-

point tool. You first set conditional checkpoints in the source code using the

ASSERT statement; unconditional checkpoints are set using the BREAK-POINT state-

ment. These have the effect that programs will be continued only if a preset condi-

tion is fulfilled. These checkpoints can be searched for, activated, or deactivated.

As with breakpoints, watchpoints are places in the program that instruct the ABAP

runtime processor to interrupt the program execution at a particular point. In

contrast to breakpoints, however, watchpoints do not activate debugging mode

until the contents of a specified field change. You can define watchpoints only

within the Debugger (shown in Figure 5.17).

Watchpoints, like breakpoints, are user-specific and do not affect other users run-

ning the same program. Unlike the classic Debugger, which has a limit of 10 watch-

points, there is no limit on the number of consecutive watchpoints in the new

Debugger. If you set a watchpoint for a field without specifying a relational opera-

tor or comparison value, program execution continues until the contents of the

field change. If you specify a relational operator and comparison value when you

define a watchpoint, program execution continues until the specified condition is

met. You can use watchpoints to display changes to references of strings, data, or

objects, as well as internal tables.

Chapter 5 ABAP Debugger Program Usage124
Figure 5.17 Creating a Conditional Watchpoint

The ABAP Debugger differentiates between the breakpoint variants shown in

Table 5.2.

Type of Breakpoint Behavior

Static breakpoints Keyword BREAK-POINT inserts a user-independent breakpoint

as an ABAP statement in the source text. Related is the state-

ment BREAK <user_name>, which sets a user-dependent break-

point in the source text.

Directly set dynamic

breakpoints

These are set in the ABAP Editor or the Debugger (by either dou-

ble-clicking before the line number if you are using the older

source code display or single-clicking before the line number if

you are using the newer source code with edit control). Dynamic

breakpoints are always user-specific and are deleted when you

log off from the SAP system.

Table 5.2 Types of Breakpoints
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 5 125
Assertions and Breakpoints

Checkpoints define places in a program where the program state can be tested

during execution. A BREAK-POINT statement represents an unconditional check-

point. In this case, the program execution is unconditionally interrupted at this

point in the program, and the Debugger is started.

Assertions are another form of checkpoint, which you use to implement condi-

tional checkpoints within your program. An assertion checks whether a defined

condition is satisfied. An assertion is defined by an ASSERT statement as a condi-

tional checkpoint.

Assertions and BREAK-POINT statements are either always active or can be acti-

vated by assigning them to a checkpoint group (shown in Figure 5.18).

Figure 5.18 Checkpoint Group

Breakpoints for state-

ments, subroutines,

function modules, or

methods

The Debugger interrupts the program directly before the speci-

fied statement is executed.

Breakpoints for excep-

tions and system excep-

tions

The Debugger interrupts the program directly after a runtime

error is raised.

Type of Breakpoint Behavior

Table 5.2 Types of Breakpoints (Cont.)

Chapter 5 ABAP Debugger Program Usage126
When the program reaches an active assertion, it evaluates the corresponding con-

dition or logical expression. If no checkpoint group is assigned to a failed asser-

tion, the default behavior is for a runtime error to be produced. If the condition is

violated, the program terminates with a runtime error, accesses the ABAP Debug-

ger, or creates a log entry; otherwise, the program continues with the next state-

ment. If you assign the assertion to a checkpoint group, the program behavior is

controlled by the corresponding activation settings of the checkpoint group.

You can also edit the conditional and unconditional checkpoints using the Break-

point tool in the Debugger, as shown in Figure 5.19.

Figure 5.19 Changing the Activation in the Debugger

New Debugger Customization and Settings

One of the main benefits of the Debugger interface redesign is the option of mak-

ing it configurable for your use. This provides you with the option of being able to

set the views and their sizes as required. You also have the ability to group certain

views together and have them available at each restart of the new Debugger.

In its current form, the Debugger provides you with a flexible and designable

interface with a total of 11 work areas or desktops. Depending on your selection,

you can have up to four tools simultaneously in each of these work areas. Their

sizes can be set individually. The first three desktops allow you to specify individ-

ual settings using the Save layout function (see Figure 5.20). The Debugger will use

your last saved settings the next time you start the Debugger.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 5 127
Figure 5.20 Save Layout Button

When you start the Debugger, you will find the standard flow control buttons

below the title bar in the application tool bar (see Figure 5.21). These flow control

buttons remain unchanged from the classic version of the Debugger.

Figure 5.21 Flow Buttons

The first button provides a single-step function, the second an execute function,

the third a return function, and the last continues execution. The buttons also pro-

vide a way to set a breakpoint, create a watchpoint, or, as already mentioned, save

the layout configuration.

Below the application toolbar you will find the information regarding the current

code being executed (see Figure 5.22). You will see the program and the name of

the include or program of the source currently executing, and below that, the pro-

gram event and the name of the event currently executing. To the right of the

include or program name is the current line that will execute. The button directly

below this line number positions the screen to show this line in the Source Code

tool. The blue I button displays the program attributes of the source code. The but-

tons displayed before the program name or event, if clicked, open a new window

with the source code displayed. The same button is available when you view the

ABAP call stack tool for each call. Again, clicking on the button opens the source

code at that point in the program.

Figure 5.22 Program Information

To the right of the program information, you will find two system variables and

their contents. The default is SY-SUBRC (the system variable containing the state-

ment return code) and SY-TABIX (the system variable containing the internal table

Chapter 5 ABAP Debugger Program Usage128
row last accessed), but you can override either or both simply by typing over their

names.

Most of the screen is used to display the desktops or tool area. Unlike the classic

Debugger, the larger your screen or the higher your screen resolution, the more

data can be displayed.

The Variable Fast Display tool currently has six tabs (see Figure 5.23). The first two

are provided empty, and you can either type or double-click a name in the source

code to add it to the list. The third tab (Locals) shows all local variables for the cur-

rent program modularization unit, and the fourth (Globals) shows all global vari-

ables in the current program.

Figure 5.23 Variable Fast Display

The Variable Fast Display tool on the first two tabs also provides a button to select

two displayed objects and do a comparison. Alternatively, you can navigate to the

Difference tab and specify the variables directly (see Figure 5.24 for the Diff tool).

Figure 5.24 Diff Tool

Finally, it is possible to change how secondary tools (for example, the editor) are

opened: either in a new parallel window or in the current window. It is also possi-

ble to customize the behavior of the navigation to Detail Views and where the vari-

able will be displayed when clicked on from the source code tool.

Starting with release 7.02, you will notice a new tab on Variable Fast Display tool

labeled Auto (see Figure 5.23). Its use is not intuitive, but we think it can be useful.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 5 129
Notice that Figure 5.21 (flow control) has a new (as of release 7.02) button following

the Single Step, Execute, Return, and Continue buttons called Step Size. This button

toggles the size of the single step from normal line debugging to statement debug-

ging. After you switch to statement debugging, the Auto tab is populated with the

results of functional expressions when single step is used.

Several other new features were introduced with release 7.02. There is now the

ability to use Debugger Scripting (see Figure 5.9 for the location of the Script tab),

which can be managed from the new Transaction SAS. One new feature we think is

very useful and will become even more useful is Software Layer Aware Debugging

(Transaction SLAD).

Have you ever had a program that provided an extension to standard functional-

ity where that extension is not working properly? Depending on where you enter

the Debugger, you can end up wading through standard code for what feels like

days. The last example involved a custom button on an ALV report. If you drop

into the Debugger with “/h” prior to clicking on the custom button, you drop into

the SALV code and then have to debug until control passes back to the report. With

SLAD, it is now possible to enter the Debugger exactly where you want. The pro-

cess starts with a new transaction, SLAD. First navigate from the Profiles tab (ignor-

ing its popup) to the Object Sets tab. In Figure 5.25 you see the first step after

clicking the Create button for an object set.

Figure 5.25 Create Object Set

Chapter 5 ABAP Debugger Program Usage130
Then you define what the selection set will contain (shown in Figure 5.26), and

after clicking on the button, you define what to include (shown in Figure 5.27). In

our example, we are interested in the Z program allowing us to treat all of the cus-

tom-developed code as a layer.

Figure 5.26 Selection Set

Figure 5.27 Define Selection

Now you create a profile (as shown in Figure 5.28) to use in the Debugger. Complete

your profile by dragging the object set into the profile (joining the default

<<%REST%>> set), as shown in Figure 5.29.

In the session with our problem report, you enter “/h” in the command box and

click on the button you want to debug (as shown in Figure 5.30). Drop into the

Debugger, where you click on Configure Debugger Layer. Select the Layer-Aware

Debugger Active checkbox and pick your profile, as shown in Figure 5.31.

Figure 5.28 Create Profile
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 5 131
Figure 5.29 Add Object Set to Profile

Figure 5.30 Debug the Button

Figure 5.31 Select the Profile

Chapter 5 ABAP Debugger Program Usage132
After picking your profile, you will notice that a new button has appeared between

the Continue button and the Step Size button, called Next Object Set (Figure 5.32).

Once you click on the Next Object Set button, the program continues execution

until you are back in your program (Figure 5.33) when the object set in your profile

is accessed.

Figure 5.32 Next Object Set

Figure 5.33 Next Layer

Important Terminology

You need to understand the difference between a breakpoint and a watchpoint for

effective use of the Debugger. Remember that a breakpoint relates to the actual
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Practice Questions Chapter 5 133
code (either a statement or point within the code), whereas a watchpoint is related

to the value of a data object. It is also important to understand how checkpoint

groups can modify the behavior of breakpoints.

Another possible cause of confusion is the difference between external mode and

exclusive mode. Remember that external mode describes the number of sessions

opened within a login session, whereas exclusive mode is what keeps the Debug-

ger in one work process within the server. Remember that a non-exclusive mode

will be rolled out between steps in the Debugger and may switch work processes.

Practice Questions

These practice questions will help you evaluate your understanding of the topic.

The questions shown are similar in nature to those found on the certification

examination. Although none of these questions will be on the exam itself, they

allow you to review your knowledge of the subject. Select the correct answers and

then check the completeness of your answers in the following solution section.

Remember that you must select all correct answers and only correct answers on

the exam to receive credit for the question.

1. The Debugger displays a maximum of eight data objects at one time.

� A. True

� B. False

2. A watchpoint stops program execution every time the condition specified is

met.

� A. True

� B. False

3. Both the classic Debugger and the new Debugger can be used on all ABAP code

without restriction.

� A. True

� B. False

Chapter 5 ABAP Debugger Program Usage134
4. Under which circumstances will the classic Debugger start as the Debugger?

Select all that apply.

� A. None; the new Debugger will always start as the Debugger.

� B. When five modes already exist for this logon session.

� C. When the number of debugging sessions exceeds half the number of dialog

sessions.

� D. When you specify the default as the classic Debugger in the settings of the

Object Navigator.

� E. If you manually switched to the classic Debugger during your last session.

5. What does a non-exclusive debugging mode mean? Select all that apply.

� A. A roll-out is forced in the application after each Debugger view.

� B. Someone else is debugging the same source code.

� C. Debugging is not possible between the statements SELECT and ENDSELECT

because the database cursor needs to be closed using a COMMIT.

� D. Debugging is not possible for conversion or field exits.

� E. Owing to the commit, inconsistent datasets can occur in the database.

� F. It may be used anywhere in the landscape.

6. What is the maximum number of watchpoints that can exist at one time?

� A. 8

� B. 10

� C. 16

� D. No limit

7. Setting breakpoints for a method or function module within the Debugger

allows the use of (F4) (value help) to find the correct name.

� A. True

� B. False
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Practice Questions Chapter 5 135
8. All breakpoints are valid for the entire Debugger session, and all can be

changed by the Debugger.

� A. True

� B. False

9. It is possible to make multiple changes to data objects at the same time in the

Debugger.

� A. True

� B. False

10. When starting the Debugger, what circumstance causes the runtime error

DEBUGGING_NOT_POSSIBLE?

� A. Starting a non-exclusive mode in a productive system

� B. When more than five sessions are already associated with this login user

� C. When the number of debugging sessions on the server exceeds the value

defined by the profile parameter rdisp/wpdbug_max_no

11. How many work areas are available in the Debugger?

� A. 7

� B. 9

� C. 12

� D. 15

12. What button undoes layout changes to the Debugger? Fill in the blank.

13. The Debugger is entirely self-contained and requires no external transactions.

� A. True

� B. False

Chapter 5 ABAP Debugger Program Usage136
14. If you are using external debugging (debugging of HTTP and RFC requests,

which arrive in your ABAP system), what will the Debugger do?

� A. Always stop when the external breakpoint is reached.

� B. Never stop; external breakpoints operate on users other than your own.

� C. May or may not stop, depending on external factors.

15. What does Software Layer Aware Debugging allow you to do? Select all that

apply.

� A. Trace executing code

� B. Debug only a small portion of code

� C. Debug a large portion of code

� D. Bypass authorization objects

� E. Specify as much or as little code to debug

Practice Question Answers and Explanations

1. Correct answer: A

The classic Debugger only allowed a maximum of eight data objects. The new

Debugger allows an unlimited number (restricted only by font and window

size) to be displayed at the same time.

If you encounter a question discussing an ability or limitation of the classic

Debugger, you should assume that the question refers to the classic Debugger

and answer accordingly. If the question referenced the new Debugger, the

answer would be false.

2. Correct answer: B

If you specify a condition, the watchpoint will not stop until the condition is

true and the watchpoint will not be triggered until the variable contents

change. Therefore, if you set a watchpoint that is already true, the watchpoint

will not be triggered.

3. Correct answer: B

The classic Debugger cannot analyze conversion exits or field exits. It also has

side effects with search help (F1), value help (F4), and list output.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Practice Question Answers and Explanations Chapter 5 137
4. Correct answers: B, D

When you already have five external modes in use (or, more accurately, when

you only have one external mode remaining), the classic Debugger is automat-

ically started when starting another external mode would prevent further ses-

sions from being created. If you have the default Debugger specified as the clas-

sic, it will always start with this version.

5. Correct answers: A, C, D, E

A non-exclusive mode means the session is not locked into a work process and

will be rolled out and rolled in between steps. The roll-out forces a COMMIT WORK

between steps, which means the database cursor will be lost, causing a short

dump if it occurs between a SELECT and ENDSELECT. Because database commits

occur without regard to logical units of work, the database may become incon-

sistent. The Debugger prevents this inconsistency in a production environment.

6. Correct answer: B

Only 10 watchpoints can exist at one time with the classic Debugger. The new

Debugger has no limit.

Again, if you encounter a question discussing an ability or limitation of the

classic Debugger, you should assume that the question refers to the classic

Debugger and answer accordingly. If the question referenced the new Debug-

ger, the answer would be option D.

7. Correct answer: A

With the new Debugger executing in a separate mode, it has access to search

helps that may be used for setting breakpoints.

If you encounter a question discussing the absence of an ability of the classic

Debugger, you should assume that the question refers to the new Debugger

and answer accordingly.

8. Correct answer: A

Breakpoints set in the editor can be changed in the Debugger. Local breakpoints

can be converted to either session or external breakpoints.

9. Correct answer: A

If you open up multiple data objects for change, pressing the (Enter) key will

accept all changes to all objects.

10. Correct answer: A

If you attempt to start the Debugger on a production system and an exclusive

mode is not available, the system will produce the runtime error DEBUGGING_

NOT_POSSIBLE. On a non-productive system you would receive the indication

Chapter 5 ABAP Debugger Program Usage138
of a non-exclusive mode in the title, but owing to the potential for inconsistent

data, this mode is not allowed on production systems.

11. Correct answer: C

There are 12 desktop areas currently available for use.

12. Correct answer: Back

The Back button undoes the layout changes you have made to each desktop.

Using the Back button multiple times will undo each layout change.

13. Correct answer: B

While the Debugger is entirely self-contained for use, there are a number of

helpful tools that require an additional transaction to allow reusability in your

debugging (for example, SAAB used to manage checkpoint groups, SAS used to

manage Debugger scripts, and SLAD used to define object sets and profiles).

14. Correct answer: C

An external breakpoint may or may not stop, depending on external factors.

For example, load balancing may direct the request to another server or it may

be ignored if the request is mapped either to another user or to a generic user.

In cases where this is an issue, it is possible, beginning with release 7.02, to sup-

plement external breakpoints by using a second technique for request-based

debugging through the use of the terminal ID.

15. Correct answers: B, C, E

Software Aware Layer Debugging is a new function within the Debugger that

allows you to either predefine or define what code you want to debug at the

time. The defined layer can be as specific or as general as you want. It can be

based on type of code (for example, a function module or program or class) or

based on a predefined application area.

Takeaway

You should now be able to examine the runtime behavior of ABAP programs using

the ABAP Debugger. By examining data objects within the Debugger, it is possible

to determine why a program behaves correctly or incorrectly. If you determine the

cause of a problem in the program, it is easier to provide a correction or a solution

to the issue.

If you design programs with an eye to identifying issues during testing through

the use of assertions and checkpoint groups, your programs will be easier to main-

tain and will produce fewer issues once they are in production.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Takeaway Chapter 5 139
Refresher

You must understand watchpoints and breakpoints—both their use and how to

define them. You need to understand how to define and use assertions and check-

point groups in your program.

The final thing you should take away from this unit is the differences between the

classical Debugger and the new two-process Debugger. You should understand the

architecture of each, what limitations exist, and why the limitations exist. It is also

important to understand the tools and what options exist within the different

tools.

Table 5.3 shows the key concepts of the Debugger.

Tips

As you take the examination, read the questions carefully. If a question or answers

are valid for only one of the two Debuggers, you should answer the question

assuming that the question refers to that Debugger. The majority of the questions

can be answered for either Debugger because they contain very similar functional-

ity.

As with the majority of the subjects in the certification examination, it is import-

ant to have as much practical experience with the subject as possible. Unlike the

majority of subjects in the certification examination, you typically will learn more

by using the Debugger than by just reading about it.

Key Concept Definition

Architecture of the Debugger The classic Debugger shared the same external mode

roll area as the executing program, whereas the new

Debugger runs in its own external mode

Desktops and their tools The desktops in the Debugger and how the various tools

function in the Debugger

Checkpoint groups Used to define and use assertions and checkpoint

groups and their behavior during program execution

Breakpoints Used to define various types of breakpoints

Watchpoints Used to define a watchpoint

Table 5.3 Key Concepts Refresher

Chapter 5 ABAP Debugger Program Usage140
You should now be able to examine the runtime behavior of an ABAP program

using the ABAP Debugger to identify issues with the program and to systemati-

cally test the program. You should be able to identify and create watchpoints and

breakpoints and know the various types of breakpoints. Lastly, you should under-

stand the differences between the two versions of the Debugger. This knowledge

will enable you to pass this section in the certification exam easily.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Chapter 6

ABAP Types and
Data Objects

Techniques You’ll Master:

� Describe ABAP data types and data objects

� Define data objects using predefined and generic data types

� Understand the local and global data types

� Understand the visibility of data objects

� Understand flat structures and deep structures and differentiate

between the two

Chapter 6 ABAP Types and Data Objects142
Data types are required to define the technical attributes of a data object. Depend-

ing on the data type, you might have to define the length and number of decimal

places to fully define a data object in the program. You can use pre-defined or

ABAP Dictionary data types to define a data object. You can also define local data

types with the program and use them to define data objects in the program. Data

objects are temporary storage in the program and occupy memory; they exist for

the duration of the program.

In this chapter, you learn about data types and data objects and the difference

between them. You learn about elementary data types, local data types, and global

data types. You learn how to define data types and data objects and use them in the

program. Finally, you learn about the visibility of the data objects within ABAP

programs.

Real-World Scenario

You have started on a new project and have to develop an application for it.

To develop an application, you have to understand the data types and data

objects available within the ABAP programming language and which ones to

use in the application. In order to process data (such as reading from a data-

base table or sequential file and displaying data on the screen), you must

read and store the data temporarily in a data object.

Data objects contain data with which programs work at runtime, and they

exist for the duration of the program. To define a data object, you require a

data type, which can be a local or global data type. So to write any application

in a system, you need the definition of a data type and object to read and pro-

cess the data in the application.

You need to know the predefined and generic data types you can use and the

valid operations on the various data types, as well as the difference between

local and global data types. You also need to know the syntax for data decla-

rations and their usage in the program in order to write robust applications.

Objectives of This Portion of the Test

The objective of this portion of the ABAP certification is to test your basic under-

standing of the ABAP data types and data objects in the ABAP programming lan-
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 6 143
guage. The certification exam expects application developers to have a good

understanding of the following topics:

� Data types and data objects

� Predefined and generic data types

� Valid operations on the various data objects and their usage in programs

� Local data types and the global data types

� Structure declarations and the differences between flat, nested, and deep struc-

tures

Key Concepts Refresher

Programming languages require variables or fields to store data locally in the pro-

gram. A data object is also referred to as a variable and is the temporary internal

storage within the application. The type of operation that can be performed on the

variable or data object depends on its data type. The ABAP language has pre-

defined and generic data types, and the syntax for the data declaration for the data

objects is dependent on the data types you use.

Like any programming language, the data declarations within the ABAP program

can be local or global. The scope and the validity of the data object depend on the

definition of the data object within the program. Therefore, you should have a

good understanding of the following to write a robust business application:

� Differences between the predefined and generic data types and their usage

within the program

� Syntax of the data declaration

� Valid operations of the data objects

ABAP Types and Data Objects

Programs in any programming language work with local data, and this data is

stored in the program variables. Variables have names and type attributes, which

can be numeric, character, or string, depending on the data type supported by the

language.

In the ABAP language, the variable is called a data object, and it is defined con-

cretely by a data type. Data objects are always defined with the DATA keyword. You

can use ABAP type, local type, and global type to type data objects.

Chapter 6 ABAP Types and Data Objects144
Data Types

The data type is just a description and does not occupy memory; it can be defined

in the program independently. You can define your own data type based on the

predefined data types or global data types. Local data types are defined in the pro-

gram, whereas global data types are defined in the ABAP Dictionary. Local data

types are defined using the TYPES statement, whereas global data types are defined

in the ABAP Dictionary using data elements, type pools or type groups, table types,

structures, and tables. ABAP Dictionary objects such as tables and structures and

their components can also be used to define data types. Local data types are avail-

able to the program in which they are declared, whereas the global data types are

available to all programs in the SAP system. Data types are used for the following

purposes:

� Data types are used for the definition of data objects. They define the technical

attributes of the data objects, how the data objects are stored in memory, and

what operations are possible on the data objects based on the data type.

� Data types are also used for the definition of interface parameters. The type of

the interface parameter determines the type of the actual parameters or values

that are transferred when a modular unit is called. The modular unit can be a

subroutine, function module, or method.

� Data types can also be used for the definition of the input/output fields in the

ABAP program. They are used to declare PARAMETERS and SELECT-OPTIONS for

program selection screens and Dynpro screen fields created in the Screen

Painter. For details regarding PARAMETERS and SELECT-OPTIONS, refer to Chapter

13, and for Dynpro screens, refer to Chapter 12.

The ABAP data types can be classified as predefined or standard ABAP types and

local and global data types (see Figure 6.1). The subsequent sections discuss these

data types in detail.

Figure 6.1 ABAP Data Types

Data types

Predefined
data types

Local data
types

Global data
types

ABAP Dictionary
objects

ABAP Dictionary
type group
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 6 145
Data Objects

Data objects are temporary storage in the program and occupy memory to store

data. They contain data for the program and exist for the duration of the program.

If the data object is defined using the elementary data type, its technical attributes

are its length, number of decimal places, and the data type. For the data objects

defined with reference to the ABAP Dictionary object, the technical attributes such

as length, number of decimals, and data type are derived from the ABAP Dictio-

nary object.

ABAP programs work with the contents of the data objects and interpret them

according to their data type. You declare the data objects statically in the ABAP

program or dynamically at runtime. You can create the data object dynamically

when you call the procedure with a parameter, such as when you call a FORM rou-

tine with parameters in the program. The program treats literals like data objects,

but literals are data objects with a fixed value.

Data objects can be declared with the predefined data types, local data types, or

global data types. Data objects are defined in the program by using the DATA state-

ment and can be assigned a starting value with the VALUE statement. The ABAP lan-

guage contains the following types of data objects:

� Literals

Literals are unnamed data objects with fixed values and are created in the

source code of the program. The literal value cannot be changed, and literals

have fixed attributes such as the data type and length and number of decimal

places. Three types of literals are defined in the ABAP runtime environment:

numeric literals, text field literals, and string literals.

– Numeric literals

You define numeric literals with a sequence of digits that may contain a plus

or minus sign; that is, the sign is not mandatory. The numeric literals repre-

sent the valid number ranges defined within the predefined data types. The

numeric integer literal has a value range from –2**31+1 to 2**31-1, that is, a

value range from –2,147,483,648 to +2,147,483,647. To assign a numeric

literal to a variable, you do not need inverted commas (single quotation

marks) around the numeric literal. The following is the syntax from the

numeric literal definition:

WRITE: 12345.

Chapter 6 ABAP Types and Data Objects146
– Text field literals

The text field literals are defined in the program with a sequence of charac-

ters within single inverted commas ('). The text literal can be from 1 to 255

characters in length and is of data type C. Trailing spaces in the text field lit-

eral are ignored. The following is the syntax for text literal definition:

WRITE: 'A text Literal'.

– String literals

The string literal is defined as a sequence of characters enclosed with back

quotes (`). The length of the string literal can be up to 255 characters and is of

data type STRING. Trailing blanks in the string literal are not ignored, unlike

with the text literals. The following is the syntax to define a STRING data

object:

WRITE: `A STRING Literal`.

� Constants

Constants are named data objects that have fixed values and are defined stati-

cally using a declarative statement. You define constants with the CONSTANTS

keyword and assign the value to the data object with the VALUE statement addi-

tion. The value of constants cannot be changed during the execution of the pro-

gram. If you try to change the value of the constant, a runtime error occurs.

We recommend that you use constants instead of literals in the program. You

declare constants using the following syntax:

CONSTANTS: c_nump TYPE P DECIMALS 3 VALUE '123.657',
c_city TYPE C LENGTH 10 VALUE 'BERLIN'.

� Text symbols

Text symbols are another kind of named data object and belong to a specific

program. Text symbols are generated from the text pool in the ABAP program

when you start the program. Program titles, such as headings and selection

texts, are text elements of the program. The text elements of the program are

stored as text symbol data objects.

Text symbols are stored outside the source code in the text pool repository

object for the program. Text symbols can be translated in different languages

and stored in the text pool with the language indicator. The program or selec-

tion screen uses the text symbol to display the text, and text can be displayed in

the logon language automatically if the text symbol is maintained for the logon

language. Text symbols are of data type C and are accessed by a three-character

alphanumeric ID.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 6 147
To access the text symbol in the program, you need to address it as TEXT-XXX,

where XXX is the text ID for the text symbol maintained in the text pool reposi-

tory for the program. You maintain the text symbol from the ABAP Editor from

the menu path Goto • Text Elements • Text Symbols. You can also access the text

symbol from the ABAP program by double-clicking on the text symbol in the

program, as shown in the following statement:

WRITE text-001.
WRITE 'THIS is an English text'(002).

� Predefined data objects

Predefined data objects are the ones that are always available during the run-

time of the program and are not required to be declared in the program. Pre-

defined data objects are also called system variables. The system field SY is a

structure with the ABAP Dictionary data type SYST. The system fields SY are

automatically filled and updated by the runtime environment. System fields

are variables and can be changed during the execution of the program, but we

do not recommend this. Figure 6.2 displays the structure of the ABAP Dictio-

nary SYST.

Figure 6.2 ABAP Dictionary Structure SYST

Chapter 6 ABAP Types and Data Objects148
� Variables

Variables are called data objects and are either declared statically in the pro-

gram or created dynamically during the execution of the program. Variables

allow you to store data locally for the program in memory, and their value can

be changed during the execution of the program. You can statically declare vari-

ables with the following declarative statements:

– The DATA keyword is used to declare the data in the program whose lifetime

and visibility are dependent on the context of the declaration. If the variable

is defined in a subroutine, then it is valid for the lifetime of the subroutine

and only in the subroutine. Otherwise, if it is defined at the top of the pro-

gram, it is globally available in the program. You provide the initial value to

the data object using the VALUE keyword:

DATA: count TYPE I,
count2 TYPE I value 10.

– Inline declaration of variable and field symbols are new features introduced

in SAP NetWeaver 7.4 SP04. The inline declaration makes the program simpler

and easy to understand. An inline declaration is performed using a declara-

tion operator in a declaration expression and is made in a declaration posi-

tion. The declaration position is the writer position, in which the operand type

can be determined statically from the context. A declaration expression with

the declaration operator DATA declares a variable var used as an operand in

the current writer position. This way, the declaration is made in the opera-

tional statement rather than in the declaration statement. The data type of

the variable is determined by the operand type. See Listing 6.1 through Listing

6.3 for examples of the syntax and use of an inline declaration.

DATA: itab TYPE STANDARD TABLE OF mara.

SELECT matnr bismt FROM mara
INTO CORRESPONDING FIELDS OF TABLE itab

WHERE mtart EQ 'FERT'.

LOOP AT itab INTO DATA(wa).
WRITE:/ wa-matnr, wa-bismt.

ENDLOOP.

READ TABLE itab WITH KEY matnr = '1400-500' INTO DATA(wa2).

Listing 6.1 Declaration of Field Symbols
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 6 149
DATA: itab TYPE STANDARD TABLE OF mara.

LOOP AT itab ASSIGNING FIELD-SYMBOL(<line>).
WRITE:/ <line>-matnr, <line>-bismt.

ENDLOOP.

READ TABLE itab WITH KEY matnr ='ABC'
ASSIGNING FIELD-SYMBOL(<line2>).

Listing 6.2 Declaration of Actual Parameters

oref->meth(IMPORTING p1 = DATA(a1)
IMPORTING p2 = DATA(a2)

...).

Listing 6.3 Declaration of Table Work Area

� The STATICS keyword is used to declare the data with the static validity within

the procedure. Variables declared with the DATA statement exist for as long as

the context in which they are defined. Variables defined in the ABAP main pro-

gram exist until the runtime of the program, and the local variables defined in

the procedure are only available inside the procedure as long as the procedure

is running. You can declare a variable using the STATICS keyword to retain a

local variable (defined inside the procedure) beyond the runtime of the proce-

dure. The declared variable within the procedure will exist for the lifetime of the

main program but is available within the procedure. Hence, if you want to keep

the value of the local data object beyond the runtime of the subroutine, then

you should use the STATICS keyword to declare the variable. The following

example displays the use of the STATICS keyword:

REPORT DEMO_STATIC_DATA_OBJECT.
DO 5 TIMES.
PERFORM dataobject_example.
ENDDO.
FORM dataobject_example.
DATA count1 TYPE I.
STATICS count2 TYPE I.
count1 = count1 + 1.
count2 = count2 + 1.
WRITE: / 'Count1: ', count1, 'Count2: ', count2.
ENDFORM.

When you execute the program, the following is displayed:

Count1: 1 Count2: 1
Count1: 1 Count2: 2
Count1: 1 Count2: 3

Chapter 6 ABAP Types and Data Objects150
Count1: 1 Count2: 4
Count1: 1 Count2: 5

In the example, the variable count1 does not retain the value because it is declared

with the DATA keyword, whereas the variable count2, declared with the STATICS

keyword, retains the value for the runtime of the program. The variable count1 is

initialized again when the subroutine is called the next time, whereas the variable

count2 is initialized only during the first call and keeps incrementing the value

during the subsequent call.

� CLASS-DATA

The CLASS-DATA keyword is used to declare a static attribute for the class and is

valid for all of the instances of the class within the program.

� PARAMETERS

The PARAMETERS keyword is used to declare an elementary data object that is

also displayed as an input field on the selection screen.

� SELECT-OPTIONS

The SELECT-OPTIONS keyword is used to declare an internal table that is also dis-

played as an input field on the selection screen.

You declare variables with the DATA keyword with the following syntax:

DATA: var1 TYPE I.
DATA: var2 LIKE var1.
DATA: var3 TYPE STRING VALUE 'Hello'.

The variable name <VAR1> can be up to 30 characters long. You define the technical

attributes of the data object during the declaration. You define the data type,

length, and number of decimal places, although for some types the length and

number of decimal places are fixed (for example, type d, type t, etc.) or come from

the ABAP Dictionary. The variable is declared using the ABAP Dictionary type.

If you are using the TYPE keyword to declare the data, then the <type> could be a

predefined ABAP data type, an existing local data type within the program, or an

ABAP Dictionary data type. If you are using the LIKE keyword to declare the data

object, then the <obj> must be an existing data object in the program that has

already been declared, or it can be a database table, view, or structure, or a compo-

nent of the table or structure.

The VALUE keyword is used to define a starting <val> value for the variable. The

LIKE statement is allowed in ABAP Objects only to declare local data objects or SY

fields such as SY-UNAME, SY-DATUM, and so on.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 6 151
ABAP Data Types

ABAP data types are the predefined data types provided by the ABAP runtime envi-

ronment. The predefined data types can be used in all ABAP programs; you use

them to define local data types and data objects in your program.

ABAP data types can be used to describe a single variable and elementary data

objects. They can be used to describe the components of the structured data

objects as well. One way of classifying the predefined elementary data types is

fixed length versus variable length.

There are a total of 13 predefined elementary data types. There are 11 fixed-length

predefined elementary data types and two variable-length data types. The follow-

ing are the 11 predefined fixed-length data types:

� The four character types are numeric text (N), character text (C), date type (D),

and time type (T). Fields of these types are known as character fields. Each posi-

tion in these fields takes enough space for the code of the one character. With

the adoption of Unicode, each character occupies two to four bytes.

� The three numeric types are integer (I), floating point number (F), and packed

number (P), which are used in ABAP to display and calculate numbers. The

numeric data types (I, F, and P) differ in the inner representation of values,

value ranges, and the arithmetic used in the calculation.

� The integer type represents a whole number. The value range for a type I num-

ber is –2,147,483,648 to +2,147,483,647. Non-integer results of arithmetic

operation are rounded, not truncated. The following example displays result of

division operation on an integer data object:

DATA: num1 TYPE I VALUE 5,
num2 TYPE I VALUE 2,
Result TYPE I.
Result = num1 / num2.

The result would be 3.

The value range of type F numbers is 1*10**-307 to 1*10**308 for positive

and negative numbers including zero; that is, valid values of type F numbers are

–1,7976931348623157EE+308 to –2,2250738585072014EE-308 for the negative

area, the value zero (0), and +2,2250738585072014EE-308 to +1,7976931348

623157EE+308 for the positive area. The accuracy range is approximately 15 deci-

mals. You should not use floating point numbers if high accuracy is required; oth-

erwise, use type P data.

Chapter 6 ABAP Types and Data Objects152
Data objects of type P can have decimal values. The number of decimal places can

be specified in the definition of the data object. The value range of type P data

depends on its length and the number of digits after the decimal point. The valid

length can be from 1 to 16 bytes. Data objects of type P can have a maximum of 14

decimal places. The initial value of type P data is zero. When working with type P

data, it is important to set the program attribute to Fixed Point Arithmetic; other-

wise, type numbers are treated as integers. The data objects of type P are also called

packed data objects. The following is the syntax for the data object of type P:

DATA: pack_num1 TYPE P LENGTH 8 DECIMALS 2,
pack_num2 TYPE P LENGTH 8 DECIMALS 2 VALUE '2.55'.

The length of 8 bytes in the previous data object definition corresponds to 2*8-1

numbers, including the decimals places.

� A decimal floating point number with ABAP types decfloat16 and decfloat34

was introduced in SAP NetWeaver 7.0 EHP 2 to satisfy the demand for more pre-

cise processing of decimal numbers that have large ranges of value. The existing

ABAP type P represents a decimal number precisely, but the value range is often

too small. Unlike binary floating point numbers, decimal floating point num-

bers are represented internally with a decimal mantissa. The value range is

determined by mantissas with a length of 16 or 34 and exponents between –383

and +384 or –6143 and +6144.

In other words, the valid values for the decfloat16 type number are numbers

between 1E385 and –1E-383 for the negative range, 0, and +1E-383 to 1E385.

Similarly, the valid values for the decfloat34 type number are 1E6145 and –1E-

6143 for the negative range, 0, and +1E-6143 and 1E6145. Unlike type P, the num-

ber of decimal places is not a property of the data type; an exponent of the value

determines the decimal places.

DATA: dec_num1 TYPE decfloat16,
dec_num2 TYPE decfloat34.

� The hexadecimal type, type X, is a data type used to define a byte in memory.

One byte is represented by two-digit hexadecimal display. The syntax to declare

a data object of type X is as follows:

DATA: hex(1) TYPE X VALUE '
09
'.

� The new numeric integer type int8 was introduced in NetWeaver 7.50. The inte-

ger type represents the signed whole number with 8 bytes in length and a value

range of -9,223,372,036,854,775,808 to +9,223,372,036,854,775,807. The
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 6 153
date object of type int8 cannot be stored at a random address in the main mem-

ory. The date type int8 is stored at a memory address divisible by 8 due to the

enhanced alignment requirement. The output length of the data object of type

int8 is 20. A new calculation type for arithmetic expression has been intro-

duced for int8 and it’s situated between date type I and p in the hierarchy.

The two elementary data types of variable length are STRING and XSTRING:

� The STRING data type is a variable-length character string. A string can contain

any number of alphanumeric characters. No memory is allocated to the string

until a value is assigned to it, because you wouldn’t know how much memory to

allocate. The memory is assigned dynamically when you know what the value

will be. There is technically no maximum length for the STRING data type. The

maximum amount of memory that can be assigned to the string is dependent

on the profile parameter ztta/max_memreq_MB; therefore, the maximum length

of the string is dependent on the profile parameter.

� The type XSTRING is a variable-length hexadecimal byte sequence. It can contain

any number of bytes. The length of the byte string is the same as the number of

bytes. Similar to the type STRING, the memory is allocated dynamically at run-

time when a value is assigned to a data object of this type.

The predefined data types can be further categorized as complete data types and

incomplete data types. For the complete data types, you don’t specify the length—

either because they have a fixed length such as data type D (you wouldn’t ever

need a different length other than 8 characters for a date) or because it is a vari-

able-length string, and therefore you don’t specify the length because the memory

is allocated dynamically at runtime when you assign a value to it. Hence, the data

object definition does not require an additional length specification when you are

using complete data types.

As of SAP NetWeaver 7.40 SP08, the system class CL_ABAP_ELEMDESCR contains the

constants TYPE_P_MAX_LENGTH, TYPE_P_MAX_DECIMALS, TYPE_C_MAX_LENGTH, TYPE_

N_MAX_LENGTH, and TYPE_X_MAX_LENGTH for the maximum lengths and decimal

places for the elementary data types p, c, n, and x.

The system class CL_ABAP_MATH contains constants for the minimum and maxi-

mum values for most numeric types.

Table 6.1 specifies the predefined elementary data types that do not require a

length specification for the definition when defining data objects.

Chapter 6 ABAP Types and Data Objects154
Data types that require the length specification to define the data object are called

the incomplete data types. If you do not specify the length, then the default length

for the data type will be used. Table 6.2 lists the incomplete data types.

The following is the syntax to declare incomplete data types:

DATA var1 TYPE C. "character variable of length 1
DATA: var2(3) TYPE C. "character variable of length 3
DATA: var3 TYPE C LENGTH 3. "character variable of length 3

The complete data types—D, F, I, and T—define the data object fully. The data types

C, N, P, and X are generic and require a length specification to define the data object

fully. The following is the syntax for the data type and data objects:

Data Type Length Initial Value Meaning

I 4 0 4 byte Integer data type

int8 8 0 8 byte Integer data type

F 8 0 Floating point number

D 8 '00000000' Date field in the format 'YYYYMMDD'

T 6 '000000' Time field in the format 'HHMMSS'

decfloat16 8 0 Decimal floating point number with 16 decimal

places

decfloat34 16 0 Decimal floating point number with 34 decimal

places

STRING Dynamic Dynamic-length character string

XSTRING Dynamic Dynamic-length byte sequence (hexadecimal

string)

Table 6.1 Standard Fixed-Length Data Types

Data Type Default Length Initial Value Meaning

C 1 ' ' Text field, alphanumeric characters

N 1 '0..0' Numeric text field

P 8 0 Packed number

X 1 'X0...0' Hexadecimal byte sequence

Table 6.2 Incomplete ABAP Data Types
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 6 155
TYPES: v_char1(2) TYPE C.
Types: v_char2 TYPE C LENGTH 10.
TYPES: num1 TYPE P DECIMALS 2.
DATA: name(20) TYPE C.
DATA: price TYPE P DECIMALS 2.

Local Data Types

Local data types are defined inside the ABAP program and are visible to that pro-

gram only. You can use predefined, local, or global types to define them within the

program. You define local data types using the TYPES statement:

TYPES: <type_name> ... [TYPE <ABAP-Type> | LIKE <obj>] .

The type name can be up to 30 characters and can use letters, digits, and under-

scores. <ABAP-Type> could be a predefined elementary data type, another local

data type defined in the program, or an ABAP Dictionary type. You can use the

LIKE statement to refer to a database table or ABAP Dictionary structure, but we

recommend that you use TYPE as ABAP object-oriented programming; you can use

the LIKE statement of only local attributes or SY fields.

The local data types are declared using the TYPES keyword:

TYPES: char1 TYPE C LENGTH 8,
num1 TYPE N LENGTH 6,
pack1 TYPE P LENGTH 3 DECIMALS 2.

The complex types consist of a sequence of elementary data types, complex data

types, or reference types. You can also use ABAP Dictionary objects such as data

elements, structures, tables, and components of structures or tables to define the

individual component of the complex type.

Complex data types consist of structure types and table types. Structure data types

can be made up of components of any data types. The components of the structure

data type can be a sequence of related elementary data types, complex data types,

or reference data types. Depending on the type of component, the structure type

can be a flat structure, nested structure, or deep nested structure.

A flat structure type contains fixed-length components, whereas a nested struc-

ture type contains a substructure within the structure type (that is, components

that are not elementary). A flat structure can also be nested. A structure type is

called deep when it contains an internal table or variable-length component. The

individual components of the structure are accessed within the program by using

a hyphen between the structure name and the component.

Chapter 6 ABAP Types and Data Objects156
The following is the syntax to define the structure data type in an ABAP program:

TYPES: BEGIN OF address_ty,
firstname TYPE C LENGTH 20,
lastname TYPE C LENGTH 20,
street TYPE C LENGTH 30,
city TYPE C LENGTH 20,

END OF address_ty.

You can use the above TYPES definition to declare the data object and then access

the individual component in the program to assign a value. The following exam-

ple code displays the syntax to access individual components of the structure data

type in the program:

DATA: addrs TYPE address_ty.
addrs-firstname = 'Bob',
addrs-lastname = 'Johnson'
addrs-street = '123 Adam Lane'.
WRITE: addrs-firstname, addrs-lastname, addrs-street.

The following example code defines a nested structure type locally in an ABAP pro-

gram:

TYPES: BEGIN OF stru1,
fld1 TYPE I,
BEGIN OF stru2,

fld2 TYPE C,
fld3 TYPE I,

END OF stru2,
END of stru1.

TYPES: BEGIN of addr1,
street_no TYPE C LENGTH 30,
city TYPE C LENGTH 20,
state TYPE C LENGTH 30,
country TYPE C LENGTH 20,

END of addr1.
TYPES: BEGIN OF contact_det,

firstname TYPE C LENGTH 20,
lastname TYPE C LENGTH 20,
address TYPE addr1,
phoneno TYPE C length 15,

END OF contact_det.

Table types consist of any number of lines of the same data type and are used to

describe internal tables. This topic is discussed in more detail in Chapter 7. The

table line can have an elementary data type or a complex data type. The local table

for the ABAP program is called an internal table. Use the following syntax to create

a table type:
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 6 157
TYPES: <Table_type>
TYPE <tablekind> OF <linetype> [WITH <key>].

The TYPES statement can define a table type with access type <tablekind>, line

type <linetype>, and key <key>. The <linetype> is a known data type in the pro-

gram. The following is an example code for table type definition:

TYPES: BEGIN of flightinfo,
carrid TYPE s_carr_id,
carrname TYPE s_carrname,
connid TYPE s_conn_id,
fldate TYPE sy-datum,
fltime TYPE s_fltime,

END OF flightinfo.
TYPES: itab TYPE SORTED TABLE OF flightinfo

WITH UNIQUE KEY carrid.

These program statements define the table type itab with a line type of structure

flightinfo and unique key of structure component NAME. Refer to Chapter 7 for

detailed information about internal tables and their use in ABAP programs.

Meshes are special structures, the components of which are internal tables.

Meshes are linked to each other via association. Listing 6.4 provides the syntax to

create the MESH data type.

TYPES:
BEGIN OF line1,

col1 TYPE i,
END OF line1,
t_itab1 TYPE SORTED TABLE OF line1

WITH NON-UNIQUE KEY col1,
BEGIN OF line2,

col1 TYPE i,
col2 TYPE i,

END OF line2,
t_itab2 TYPE SORTED TABLE OF line2

WITH NON-UNIQUE KEY col1 col2,
BEGIN OF MESH t_mesh,

snode1 TYPE t_itab1
ASSOCIATION to_node2 TO snode2 ON col1 = col1,

snode2 TYPE t_itab2,
END OF MESH t_mesh.

Listing 6.4 Syntax for MESH Declaration

Chapter 6 ABAP Types and Data Objects158
Global Data Types

Data types defined in the ABAP Dictionary are called global data types and are

available system-wide. Global data types consist of data elements, structures, and

table types:

� Data elements refer to the predefined ABAP Dictionary types, which largely cor-

respond to the predefined ABAP types.

� Structures consist of sequences of data elements or even another structure data

type as one of the components.

� Table types are internal tables defined in the ABAP Dictionary.

You can use existing ABAP Dictionary data types or create new data types in the

ABAP Dictionary. The following ABAP Dictionary objects are used to define the

global data types:

� Database tables or views are used to define a flat structure data type. The indi-

vidual fields of the database table are the components of the flat structure data

type. You can also define a type using the individual components or fields of the

database table or view. The following is the syntax for the type declaration with

the database table:

TYPES: <dbtype> TYPE <dbtab>.
TYPES: mara_ty TYPE mara.
TYPES: <t> TYPE <dbtab>-<c>.
TYPES: MATNR_TY TYPE MATNR.

You can also use the database table to define data objects or a work area with

your program. The following is the syntax to define the data object with refer-

ence to a database table:

DATA: mara_ls TYPE mara.

� You can define elementary types, reference types, and complex types in the

ABAP Dictionary. Data elements, table types, and structures are the ABAP Dic-

tionary global data types. You can refer to these data types in the program to

define a local data type or data object. The data element defines an individual

field in the ABAP Dictionary or an elementary data object or variable in your

program.

Data elements allow you to define elementary types, reference types, and com-

plex type ABAP Dictionary objects. Data elements allow you to define complex

types if they are used to type on one of the components of the complex type. On
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 6 159
their own, they are elementary types that are visible globally. You can define

data types locally by referring to a data element in the ABAP program as follows:

TYPES: <t> TYPE <data element>.
TYPES: site_ty TYPE werks_d.
DATA: wa_site TYPE site_ty.

� You can define structure types in the ABAP Dictionary. The structure type can

be a flat structure, deep structure, or nested structure. You can refer to the ABAP

Dictionary structure to declare a local structure data type. A local complex data

type with reference to the global structure is declared as follows:

TYPES: <t> TYPE <structure>.
TYPES: marc_ty TYPE dmarc.
DATA: wa_marc TYPE marc_ty.

You can also define a local structure or a work area directly using the following

syntax:

DATA: wa_marc TYPE dmarc

� Table types are internal table templates stored in the ABAP Dictionary. You

specify the line type, access type, and key during the creation of the table type

in the ABAP Dictionary. For more about the table type, refer to Chapter 7. The

syntax to define an internal table locally in the ABAP program with reference to

the table type is as follows:

DATA: mara_lt TYPE MARA_TAB.

� Type groups are ABAP Dictionary types, whereby you can store any type defini-

tion globally in the ABAP Dictionary and use them locally in your program. You

have to declare the type group in the program before you can refer to the data

types in the type group. The syntax to declare type groups in ABAP programs is

as follows:

TYPE-POOLS: <type pools>.

The following example displays the syntax to use the data type slis_t_field-

cat_alv defined in a type group. To define a data object that refers to a data type

defined in the type group SLIS, you have to declare the type group in the ABAP

program with the syntax TYPE-POOLS: SLIS and then define the data object with

reference to the data type defined in the type group.

TYPE-POOLS: SLIS.
DATA: fieldcat TYPE slis_t_fieldcat_alv.

The type slis_t_fieldcat_alv is defined as a global data type in the TYPE GROUP

SLIS.

Chapter 6 ABAP Types and Data Objects160
Data Object Visibility

The visibility of the data object is dependent on the context of the variable. The fol-

lowing rules apply to data objects declared locally within the program:

� If the variable is defined with a DATA statement within a subroutine between

FORM and ENDFORM, then it’s a local data object for the subroutine. Hence, the

data is not visible and is not accessible outside the subroutine.

� If the data object is declared within a function module, then it is a local data

object for the function module. The function group itself may have variables,

and these will be in the Top Include of the function group and will be accessible

to all function modules within the group.

� Data objects declared at the start of the program with the DATA, PARAMETERS, or

SELECT-OPTIONS keywords are visible to the entire program and are global data

objects.

� If the data object is declared between the MODULE and ENDMODULE of a PAI or PBO

module for a screen, then it is visible to the entire program. Similarly, any data

objects declared in an ABAP event block (for example, START-OF-SELECTION) are

visible to the entire program.

� Data objects defined with the TABLES statement are visible to the entire pro-

gram even if the TABLES statement is declared in an ABAP subroutine.

Warning

Be aware of the visibility declared locally within the program:

� Data objects declared between MODULE and ENDMODULE are visible to the entire

program.

� Data objects declared in an ABAP event block are visible to the entire program.

� Data objects declared with the TABLES statement are visible to the entire pro-

gram even if the TABLES statement appears in a subroutine within FORM and

ENDFORM.

Important Terminology

You should now understand the difference between the data type and data object

and their use in ABAP programs.

Data types are used for the definition of data objects. They define the technical

attributes of the data object, how the data object is stored in memory, and what
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Practice Questions Chapter 6 161
operations are possible on the data object based on the data type. You can use pre-

defined data types and global data types to define technical attributes of the data

object. Depending on the data type, you might have to define the length and the

number of decimal places to fully define the technical attribute of the data object.

For a data object defined with reference to the ABAP Dictionary object, the techni-

cal attributes such as length, number of decimal places, and data type are derived

from ABAP Dictionary objects.

Data objects are temporary storage in the program and occupy memory to store

the data. Data objects contain data for the program, and they exist for the duration

of the program.

Practice Questions

The following practice questions will help you evaluate your understanding of the

topic. The questions shown are similar in nature to those found on the certifica-

tion examination. Although none of these questions will be found on the actual

exam, they allow you to review your knowledge of the subject. Select the correct

answers and then check the completeness of your answers in the following solu-

tion section. Remember that you must select all correct answers and only correct

answers on the exam to receive credit for the question.

1. Data types store data and occupy memory.

� A. True

� B. False

2. A data object is concretely defined by means of the data type and occupied

memory. It contains data with which ABAP programs work at runtime.

� A. True

� B. False

3. The predefined data types are defined locally in the ABAP program.

� A. True

� B. False

Chapter 6 ABAP Types and Data Objects162
4. What is the default length of the type C data type?

� A. 1

� B. 10

� C. 1–65535

5. If data objects of type I are being used to store the result of a calculation, the

decimals will be truncated.

� A. True

� B. False

6. What is the default length of the type P data type?

� A. 8

� B. 1

� C. 1–16

7. What is variable-length structure called?

� A. Nested structure

� B. Deep structure

� C. Flat structure

8. Local data objects can be defined using ABAP Dictionary types.

� A. True

� B. False

9. Global data types defined in SAP systems are…

� A. Data defined in the program that is visible to all the routines/statements

within the ABAP program.

� B. ABAP Dictionary types.

� C. Date types defined in the program using ABAP Dictionary types.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Practice Questions Chapter 6 163
10. Which of the following are incorrect statements? Select all that apply.

� A. TYPES: carrid_ty LIKE spfli-s-carr_id.

� B. TYPES: werks TYPE C LENGTH 4.

� C. TYPES: date_ty TYPE D LENGTH 10.

� D. TYPES: Str TYPE STRING LENGTH 20.

11. What is the result of the following arithmetic operation?

DATA: int TYPE I.
int = 5 * (3 / 10).

� A. 1

� B. 2

� C. 1.5

� D. 0

12. What is the result of the following arithmetic operation?

DATA: int TYPE I
int = 5 / 10.

� A. 1

� B. .5

� C. 0

13. The valid value for a decimal floating point number of type decfloat16 is a

number between 1E385 and –1E-383 for a negative number, 0, and 1E-383 to

1E385 for a positive number.

� A. True

� B. False

14. The valid value for a decimal floating point number of type decfloat34 is a

number between 1E6145 and –1E-6143 for a negative number, 0, and +1E-6143

to 1E6145.

� A. True

� B. False

Chapter 6 ABAP Types and Data Objects164
15. Which of the following standard types is numeric? Select all that apply.

� A. I

� B. P

� C. F

� D. Decfloat32

16. The system class CL_ABAP_MATH contains constants for maximum and mini-

mum values for the numeric data type.

� A. True

� B. False

Practice Question Answers and Explanations

1. Correct answer: B

A data type is just the description and does not occupy memory.

2. Correct answer: A

A data object is an instance of the data type and does occupy memory. Data

types define the technical attributes of the data object.

3. Correct answer: B

Predefined data types are provided by the ABAP runtime environment and are

available system-wide.

4. Correct answer: A

The default length of the character data type C is 1. If you want the data object

to be more than one character, you have to specify the length.

TYPES: var1 TYPE C. "is a character data type
"of length 1.

TYPES: var2(10) TYPE C. "is a character data type
"of length 10.

TYPES: var2 TYPE C LENGTH 15. "is a character data type
"of length 15.

5. Correct answer: B

The type I data objects round the value and do not truncate.

DATA: int1 TYPE I,
int2 TYPE I,
int3 TYPE I.

int1 = 4/10. "value of int1 = 0
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Practice Question Answers and Explanations Chapter 6 165
int2 = 5/10 "value of int2 = 1
int3 = 16/10. "value on int3 = 2

6. Correct answer: A

The default length of the type P data type is 8. If you want to have more or less

than eight, you can specify the length with the length keyword or in parenthe-

ses after the name of the data object or data type.

7. Correct answer: B

The variable-length structure is called a deep structure. Any structure that has

a variable-length component is called a deep structure. For example, a structure

with an internal table as one of its components is a deep structure, as is a struc-

ture with a component of type STRING.

8. Correct answer: A

Local data objects can be defined using ABAP Dictionary objects.

9. Correct answer: B

Global data types are ABAP Dictionary objects, like data elements, Dictionary

structures, tables, table types, and type pools.

10. Correct answers: C, D

Data type D is a fixed-length predefined data type and does not require a length

specification. The data type STRING is a dynamic-length data type and does not

require a length specification.

11. Correct answer: D

The correct answer is 0:

int1 = 5 * (3/10).
int1 = 5 * (0) "because 3/10 = 0, due to integer rounding
int1 = 0.

12. Correct answer: A

The correct answer is 1 because the integer data type I rounds the number

during the arithmetic operation.

13. Correct answer: A

The valid values for a decimal floating point of type decfloat16 are the num-

bers between 1E385 and –1E-383 for the negative range, 0, and +1E-383 to 1E385

for the positive range.

14. Correct answer: A

The valid values for a decimal floating point of type decfloat34 are the num-

bers between 1E6145 and –1E-6143 for the negative range, 0, and +1E-6143 to

1E6145 for the positive range.

Chapter 6 ABAP Types and Data Objects166
15. Correct answers: A, B, C

I, F, and P are numeric; decfloat32 is not a defined type.

16. Correct answer: A

The system class CL_ABAP_MATH can be used within the program to determine

the minimum and the maximum value of the numeric data type.

Takeaway

You should understand the ABAP data types and data objects, and the meaning of

ABAP predefined standard data types, local data types, and global data types. It is

important that you know the differences between local data types and global data

types, and between flat structures, nested structures, and deep structures. All this

will help you write more efficient code. Finally, you should understand the scope

and validity of the data objects within the ABAP program.

Refresher

Table 6.3 repeats the key concepts of this chapter in short form.

Key Concept Definition

ABAP data types Predefined elementary data types provided by the ABAP runtime

environment are also called ABAP data types.

Data type A data type is a description and is not allocated any memory. Data

types are used to define data objects.

Data objects Data objects are instances of the data types and occupy memory.

They temporarily store data that is used in the program.

Local data type Local data types are defined using the TYPES statement in the

ABAP program. They can refer to predefined data types or global

data types from the ABAP Dictionary.

Global data types Global data types are defined in the ABAP Dictionary.

Flat structures,

nested structures,

and deep structures

Flat structures contain fixed-length components. A structure is

nested if it contains another structure as its component. A struc-

ture is called a deep structure if it contains an internal table or a

variable-length component.

Table 6.3 Key Concepts Refresher
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Takeaway Chapter 6 167
In this chapter you learned about ABAP data types and data objects, including local

data types, predefined data types, and global data types and their uses in pro-

grams. You also learned the syntax to define data objects using the ABAP Dictio-

nary data type and local and predefined data types. This knowledge will allow you

to easily pass this topic on the certification examination.

© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Chapter 7

Internal Table Definition
and Use

Techniques You’ll Master:

� Define internal tables

� Categorize different types of internal tables and their uses

� Define internal table types and internal table data objects in the

program

� Understand operations on internal tables

� Define ABAP Dictionary table types and the syntax to use them

in programs

Chapter 7 Internal Table Definition and Use170
Internal tables are program variables and store multiple identical structured data

records in the ABAP runtime memory. They are used to process large data sets in a

structured manner. They are beneficial for improving data processing in the pro-

gram if used correctly.

In this chapter you will learn about the various elements of internal tables. You

will learn about various kinds of internal tables and the syntax to create and use

them in programs. You will learn to define internal tables, access internal table

records, modify, delete, and perform various other operations on the internal

table records in programs.

Real-World Scenario

Imagine you have to write an application that reads data from a number of

SAP database tables, performs some comparisons and calculations, and dis-

plays the result. For example, you have to display the details of the open pur-

chase order in the SAP system along with the material details, such as

description, material type, and vendor details.

To write such an application, it would be a good idea to read all open pur-

chase orders from the database and store the purchase order details in an

internal table and then loop through the internal table, read the material and

vendor information for each purchase order, and display the result on the

screen. You may also want to store the material and vendor details in an

internal table so that you don’t have to read the details from the database

table again if the same material and vendor exist in more than one purchase

order.

To write this application, you need to understand the concept of internal

tables, including how to store and access the data from the internal table. You

also need to understand the various types of internal tables in order to write

an efficient program.

Objectives of this Portion of the Test

The objective of this portion of the certification exam is to verify your knowledge

about the concept of internal tables and their use in ABAP programs or applica-

tions. You are expected to understand how to define the internal table, access the

internal table, and know about the various types of internal tables.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 7 171
The exam will test your knowledge about the benefits of using different types of

internal tables in an application and about the syntax used to define the internal

table, create the internal table, and access different types of internal tables.

Key Concepts Refresher

An internal table is a program variable used to store multiple identically struc-

tured records in the memory of an application. This chapter provides a complete

description of how to work with internal tables. It describes the use of internal

tables, definition of internal tables, various operations on them, and different

kinds of tables. After completing this chapter you should be able to do the follow-

ing:

� Define different types of internal tables

� Populate an internal table

� Access the data in an internal table

� Understand the performance considerations during table definition and pro-

cessing

Internal Table Definition and Use

Internal tables are structured data objects and are defined locally in the ABAP pro-

gram. They allow you to store variable amounts of structured data records in

memory. They store any number of identical structured records within the ABAP

memory. An internal table is like an array found in other programming languages.

Internal tables are dynamic data objects and save the programmer the task of

dynamic memory management. The ABAP runtime system dynamically manages

the size of an internal table. The maximum number of data records in an internal

table is restricted upon installation of the hardware and the operating system.

ABAP runtime dynamically manages the size of the internal table. As a developer,

you do not have to do any work concerning memory management.

The following list details some of the features of internal tables:

� Internal tables are used for processing large data sets in a structured manner.

Typical uses of internal tables could be to read and store data from database

tables or a sequential file and then format the data to be displayed on screen or

report output. You can also store data in an internal table to pass it to a function

module, method, or subroutine for further processing.

Chapter 7 Internal Table Definition and Use172
� Processing a large volume of data in an internal table is beneficial for perfor-

mance improvement, if used correctly in the program, compared to accessing

the data sequentially from the database table. Processing an internal table is

fast because the data is stored in the memory.

� Internal tables are defined when you start the program, and data is populated,

modified, or processed while you are processing the program. The data defini-

tion and the content exist only for the runtime of the program. You lose the

table content once the program ends.

� Internal tables can contain components, columns, and fields derived from dif-

ferent database tables, or you can define an internal table based on local vari-

ables or structure definitions in your program. You can include fields from

several database tables as fields in your internal tables if you plan on working

with data from multiple database tables, for example, if you want to display the

content of those tables in reports.

� An internal table has a table body, which contains the identical structured data

records. Individual data records in an internal table are called table rows or table

entries. Individual components of a table row are called the columns or fields.

The row type of an internal table is specified through any data type and

describes the row structure of the table entries. Each table row has the same

structure.

Figure 7.1 displays the individual components of an internal table.

Figure 7.1 Individual Elements of an Internal Table

Listing 7.1 displays the internal table definition in an ABAP program. The sample

code refers to the ABAP Dictionary data type used in flight table SPFLI to define

the structure data type (line type). The local data type is used to define an internal

carrid citytoconnid cityfrom

Internal table

Table column or fields

Work area

Table row
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 7 173
table data object. The internal table data object and the work area are defined using

the DATA statement.

TYPES: BEGIN OF line_type,
airline_code TYPE s_carr_id,
connection_no TYPE s_conn_id,
from_city TYPE s_from_cit,
to_city TYPE s_to_city,

END OF line_type
DATA: itab TYPE STANDARD TABLE OF line_type.
DATA: wa TYPE line_type.

Listing 7.1 Internal Table Definition in an ABAP Program

The data type of an internal table is specified by the following attributes:

� Line type

The line type describes the row structure of the table entries and defines the

attributes of the individual components of the table row. The line type is gener-

ally defined as structure type, but almost any data type can be used for the line

type definition.

� Table key

The table key consists of key fields and their order, identifying a table row in a

manner similar to the key of the database table. An internal table can have a

unique key or a non-unique key. An internal table with a unique key cannot

contain duplicate entries. Entries in the table must differ by at least one key

field. The non-unique key means the table can have duplicate entries, and this is

perfectly legitimate because this is an internal table, rather than a database

table.

Furthermore, the table can have a standard key and user-defined key. If the line

type of an internal table is a structure, then the default standard key consists of all

non-numeric fields of the structure. A user-defined key is any subset of the struc-

ture fields that are not references or themselves an internal table.

You can define an internal table with a header line or without a header line. Header

lines are the old way of defining internal tables and are still valid, although if you

are defining an internal table, it is recommended that you define one with a sepa-

rate work area. The work area is a new standard of defining the work area of the

internal table and is explicitly defined in the program. The header line for an inter-

nal table is the same name as the internal table, whereas the work area has a differ-

ent name. Internal tables with header line definitions are not supported in object-

oriented ABAP programming.

Chapter 7 Internal Table Definition and Use174
The header line or the work area is used to transfer data records from the table for

further processing. You populate the header line or the work area with the data

and then transfer the record to create the table entry. Similarly, you read the data

from an internal table into the header line or work area for processing an existing

table row. An internal table definition with a separate work area can have a line

type that is itself a deep structure, whereas an internal table with a header line can

only have a line type that is a flat structure.

Internal tables can be of different types depending on the way they access the indi-

vidual entries in the table. There are three types of internal tables:

� Standard tables

With standard tables, row numbering (index) is maintained internally, and

tables can be accessed using the key or an index. This type of table cannot have

a unique key and can therefore have duplicate entries. The response time of a

standard table is better if accessed with an index. Key access for the standard

table is not optimized because sequential search across all rows is carried out.

A standard table is declared using the STANDARD TABLE addition. The table index-

ing is managed internally. When a record is deleted or inserted, the indexing is

reorganized. You can add a new record to a standard table by using the APPEND

statement.

� Sorted tables

Sorted tables are defined using the SORTED TABLE addition. Table records are

stored in sorted order according to the table keys, and the table is sorted in

ascending order by default. The index of the sorted internal table is maintained

internally.

A sorted table can have a unique or non-unique key. You simply state this when

defining the internal table. The sorted internal table can be accessed with the

table key or index. The system always uses the binary search algorithm for the

sorted table when you access it using the table key (or part of the key from left

to right). You fill a sorted table using the INSERT statement. The table entries are

inserted according to the defined sort sequence. Both sorted and standard

tables are also called index tables because they can be accessed using an index.

� Hashed tables

Hashed tables are defined using the HASHED TABLE addition. They do not have

indexes, and hence they cannot be accessed using an index; only key access can

be used. The sequence of the entries is managed by hash algorithm. A hashed

table must have a unique key because it can only be accessed using the key.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 7 175
Hashed internal tables are ideal for storing large numbers of entries, where you

need to read those entries using the key, because the response time is not

dependent upon the number of entries. The hash algorithm is used to find the

appropriate record. Standard tables and sorted tables can be accessed with the

index or key, but hashed tables can only be accessed with a unique key. Key

access with the standard table is a linear search; for the sorted table, key access

is a binary search, and for the hashed table, the key access uses the hash algo-

rithm.

As already stated, standard tables and sorted tables can be accessed using the

index or using the key, but hashed tables can only be accessed with the key. Key

access to a standard table results in a sequential search; for a sorted table, key

access results in a binary search, and for a hashed table, key access uses the hash

algorithm to find the appropriate record.

Table 7.1 displays the possible table access and the characteristics for the different

kinds of tables.

Defining ABAP Internal Tables

Internal tables are data objects and are defined using the DATA statement. To fully

define an internal table, you must define the line type, key, and table type. Line

types can be defined locally in the program or globally as a data type in the ABAP

Dictionary. You can define internal tables locally or define them in the ABAP Dic-

tionary as table types.

Index Tables

Hashed TableStandard Table Sorted Table

Index access Index possible Index possible Not possible

Key access Can be accessed Can be accessed Can be accessed

Uniqueness of key Non-unique Unique and non-

unique

Unique

Access Primarily using index Should be primarily

accessed using key,

not index

Only using key

Table 7.1 Access Options for Different Kinds of Tables

Chapter 7 Internal Table Definition and Use176
As of release 7.0 EHP 2, a secondary key can be defined for the internal table with

TYPES and DATA, as well as in the ABAP Dictionary. An internal table can have up to

15 optional secondary table keys with different names. The table key has now

become the primary table key; its predefined name is primary_key. The primary_

key can be replaced with an alias in the enhanced definition of the primary table

key in release 7.0 EHP 2. Standard tables are automatically assigned a standard key

if an explicit primary key is not defined.

As of SAP NetWeaver 7.40 SP02, it is now possible to define an empty table key for

a standard table by using the EMPTY KEY statement for TYPES and DATA declaration.

Without the EMPTY KEY addition, the empty table key occurs only if the standard

key of the standard table does not contain any component suitable to be a key,

such as if the row type does not contain any non-numeric elementary compo-

nents. An explicit declaration of an empty table key using EMPTY KEY is indepen-

dent of row type. A standard table with an empty primary key can have a

nonempty secondary key. Sorting a standard table with an empty table key will

not have any effect, unless you specify the table key on which you would like to

sort the standard table.

It is not possible to declare a sorted or hashed internal table with an empty key,

because the table declaration requires a key.

Hash keys and sorted keys can be declared as secondary table keys. A secondary

table index is created for each sorted secondary key of an internal table.

The components of the primary table key are declared using the UNIQUE | NON-

UNIQUE KEY addition to the statements TYPES and DATA. Similarly, a secondary table

key is declared using the UNIQUE | NON-UNIQUE KEY <key_name> COMPONENTS addi-

tion to the statement TYPES and DATA.

You can define the global table type in the ABAP Dictionary or use the existing one

(predefined by SAP) in your program. Global table types are valid system-wide and

can be used in any program in the system. The table type describes the structure

and the attribute of an internal table.

You can reference a table type defined in the ABAP Dictionary in your program

using the following syntax:

DATA mara_lt TYPE mara_tab.

This syntax creates an internal table mara_lt with the structure and attribute

defined for table type mara_tab in the ABAP Dictionary.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 7 177
The table type is an ABAP Dictionary data type and is defined by specifying the line

type, access, and key of the internal table. The line type defines the structure of an

internal table. The line type can be a flat structure, deep structure, or nested struc-

ture. The line type defines the row, and the individual component of the line type

defines the column of the internal table.

Figure 7.2 displays the line type for the ABAP Dictionary table type. In Figure 7.2,

ABAP Dictionary table MARM is used to define the line type for the table type marm_

tab. You can use an ABAP Dictionary table or structure to define the line type.

Figure 7.2 Line Type Definition in ABAP Dictionary Table Type

You can specify the access mode for the table type. The access mode defines how

to access the data in the internal table when performing key operations on the

internal table such as READ TABLE, INSERT TABLE, MODIFY TABLE, and so on. Figure 7.3

displays the possible access mode for the table type.

Chapter 7 Internal Table Definition and Use178
Figure 7.3 Table Access Definition in ABAP Dictionary Table Type

You can have the following access modes for the table type, as shown in Figure 7.3:

� Standard Table

The key access for the standard table uses a sequential search, and performance

depends on the number of entries in the table.

� Sorted Table

The internal table is stored internally and sorted by key. You should always

access the sorted internal table by key. The key access for a sorted internal table

uses binary search to access table records.

� Hashed Table

The table is internally managed using hash procedures. All entries in the table

should have a unique key.

� Index Table

The table can be a standard or sorted table. Index access is allowed for index

tables.

� Not Specified

The table can be a standard table, a sorted table, or a hashed table. The valid

operations on such a table are the intersection of the valid operations on stan-

dard, sorted, and hash tables. You cannot access tables of this type with index

operations.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 7 179
You can specify the table key and define the key category for table type. You have

three options to specify the key category:

� Unique

With the Unique key category, the table can contain records with unique keys.

� Non-unique

With the Non-unique key category, the table can contain records with duplicate

keys.

� Not specified

The key category Not specified defines a generic table type. A generic table type

does not define all of the attributes of the table type in the ABAP Dictionary; it

leaves some of the attributes undefined.

Figure 7.4 displays the various options for the table key definitions.

Figure 7.4 Table Key Definition in ABAP Dictionary Table Type Definition

You can define an internal table locally if you do not use the table type defined in

the ABAP Dictionary or if the one defined in the ABAP Dictionary does not satisfy

your development requirement. You can use the TYPES and DATA statements to

declare an internal table. The line type for the internal table is defined using the

Chapter 7 Internal Table Definition and Use180
TYPES statement, and the internal table data object is defined using the DATA state-

ment.

Listing 7.2, Listing 7.3, and Listing 7.4 show the syntax to define an internal table in

the program. The example uses ABAP Dictionary data types such as matnr and

werks to define the line type for the internal table structure. The first statement in

Listing 7.4 uses the table type itab_type defined in the program to define the

internal table itab_lt, and in the second statement the internal table is defined

with reference to the line type defined in the program.

TYPES: BEGIN OF mat_type,
material TYPE matnr,
plant TYPE werks_d,
qty TYPE P DECIMALS 2,

END OF mat_type.

Listing 7.2 Line Type Definition for Internal Table

TYPES: itab_type TYPE STANDARD TABLE OF mat_type
WITH NON-UNIQUE KEY material.

Listing 7.3 Standard Table Type Definition with Reference to Line Type Defined in Listing 7.2

DATA: itab_lt TYPE itab_type.

or

DATA: itab_lt TYPE STANDARD TABLE OF mat_type.

Listing 7.4 Standard Internal Table Definition with Reference to Local Table Type Defined in Listing 7.3

The line type can be a local type declaration or a global type from the ABAP Dictio-

nary, such as a structure, a database table, or data elements. Local types are defined

in the ABAP program, and the declaration is valid for that specific program. For the

local type, the table structure is defined using the TYPES statement. In a local type

definition, you can define an individual component of the table record structure

or include the ABAP Dictionary structure along with your local field declaration.

An ABAP Dictionary structure is included in the type definition by using the

INCLUDE statement.

Listing 7.5 displays the syntax to declare an internal table line type using the ABAP

Dictionary structure.

TYPES: BEGIN OF mat_ty.
INCLUDE STRUCTURE mara.

TYPES: END OF mat_ty.

Listing 7.5 Line Type Definition with Reference to ABAP Dictionary Structure
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 7 181
An internal table line type can be a flat structure, deep structure, or nested struc-

ture. You must define a separate work area to work with the internal table. Listing

7.6 displays the syntax to define an internal table with reference to the ABAP Dic-

tionary table. The line type of the internal table in this example corresponds to the

MARA structure, where MARA is an ABAP Dictionary table.

DATA: itab_lt TYPE STANDARD TABLE OF mara
WITH NON-UNIQUE KEY matnr.

DATA: itab_wa LIKE LINE OF itab_lt.

Listing 7.6 Internal Table Definition with Reference to ABAP Dictionary Table

Tip

The line type for an internal table with a header line must be a flat structure,

whereas the line type for an internal table without a header line can be flat struc-

ture, deep structure, or nested structure.

The STANDARD addition is optional for the declaration of the standard table. If you

do not provide the table type, the default table type is a standard internal table. For

a standard table, if you do not specify a key, the system automatically adopts a

default key as the table key. The default key for a standard table consists of all of

the non-numeric fields, in the sequence in which they appear in the line type.

The following is the syntax to define a standard table with a default key:

DATA: itab TYPE TABLE OF mara.

The additions INITIAL SIZE and WITH HEADER LINE are also possible for the data

type or data object declaration. The INITIAL SIZE <n> addition enables the system

to reserve the first block of memory for the internal table; any subsequent mem-

ory requirement is managed dynamically by the system.

The syntax to define an internal table with initial size is as follows:

DATA: itab TYPE TABLE OF mara INITIAL SIZE 4.

ABAP runtime dynamically manages the memory if the initial size for the internal

table is not specified during the internal table definition. When the initial size is

full, the system makes twice as much extra space available up to a limit of 8KB, and

thereafter each subsequent addition is created with 12KB. It makes sense to specify

the initial size only if you are sure about the number of lines in the internal table.

Otherwise, we recommend that you leave out this addition and let the system

manage the memory for internal tables.

Chapter 7 Internal Table Definition and Use182
The following example shows the syntax to define a standard internal table with

an empty key:

DATA: lt_mara TYPE TABLE OF mara WITH EMPTY KEY.

Listing 7.7 shows the syntax to define a sorted and a hashed internal table. In this

example we have defined the line type for the internal table, table type, and sorted

and hashed internal table data object.

TYPES: BEGIN OF line_type,
material TYPE matnr,
plant TYPE werks_d,
po_numb TYPE ebeln,

END OF line_type.
TYPES: itab01 TYPE SORTED TABLE OF line_type

WITH UNIQUE KEY material plant.
TYPES: itab02 TYPE HASHED TABLE OF line_type

WITH UNIQUE KEY material plant.

Listing 7.7 Syntax for Sorted and Hashed Table Types

Listing 7.8 shows two possibilities to create a sorted internal table. You can also use

the ABAP Dictionary structure or table to define an internal table, as shown in Lis-

ting 7.9.

DATA: itab01_lt TYPE itab01.

or

DATA: itab01_lt TYPE SORTED TABLE OF line_type
WITH UNIQUE KEY material plant.

Listing 7.8 Sorted Internal Table Data Objects

DATA: itab TYPE SORTED TABLE OF marc
WITH UNIQUE KEY matnr werks.

Listing 7.9 Define Internal Table

Finally, Listing 7.10 shows the possible syntax to define a hashed internal table. A

unique key attribute is required for the hashed table and should be specified

during the definition of the table. The sorted table can have a unique or a non-

unique key; the data is inserted in a sorted order in the sorted table according to its

key.

DATA: itab02_lt TYPE itab02.

or

DATA: itab02_lt TYPE HASHED TABLE OF line_type
WITH UNIQUE KEY material plant.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 7 183
DATA: itab03 TYPE HASHED TABLE OF marc
WITH UNIQUE KEY matnr werks.

Listing 7.10 Hashed Internal Table Data Objects

Internal Table with Header Line

You could declare an internal table with a header line using the DATA statement

with the addition of OCCURS followed by the declaration of a flat structure. Object-

oriented programming does not support internal tables with header lines, so you

shouldn’t use this syntax anymore with object-oriented programming. Also, the

line type for the internal table with a header line supports only a flat structure. The

line type of an internal table with a header line cannot be a nested structure or

deep structure.

Listing 7.11 displays an example code to define an internal table with a header line.

DATA: BEGIN OF itab_lt OCCURS 0,
material LIKE mard-matnr,
plant LIKE mard-werks
mat_desc LIKE makt-maktx,
stock LIKE mard-labst,

END OF itab_lt.

or

DATA: BEGIN OF itab_lt OCCURS 0,
material TYPE matnr,
plant TYPE werks_d
mat_desc TYPE maktx,
stock TYPE labst,

END OF itab_lt.

Listing 7.11 Definition of Internal Table with Header Line

You define the internal table structure within the DATA: BEGIN OF <internal table

name> and END OF <internal table name> statement. You can use the LIKE state-

ment or TYPE statement to define the individual component of the structure, as

shown in the example above. The OCCURS addition defines the expected number of

lines for an internal table. If you do not specify the OCCURS addition, then the data

object definition is simply a structure or a work area. So without the addition

OCCURS in the above example, the data object is not an internal table. With the

addition OCCURS, the system creates a standard internal table with a header line.

You specify the initial size of the internal table with OCCURS <no of line>, and the

system reserves the memory for the internal table. The ABAP runtime dynami-

cally manages the size of the internal table, so unless you know the number of

Chapter 7 Internal Table Definition and Use184
rows of the internal table, it does not make sense to specify the number of lines.

You can simply specify OCCURS 0 and let the system manage the memory for an

internal table. As mentioned earlier, OCCURS additions were used in old releases,

and we do not recommend that you use internal tables with OCCURS clauses in new

releases; this is not supported in object-oriented programming.

Listing 7.12 displays another example code to define an internal table with a header

line.

TYPES: BEGIN OF itab_ty,
matnr TYPE matnr,
werks TYPE werks,
maktx TYPE maktx,
labst TYPE labst,

END OF itab_ty.
DATA: itab_lt TYPE itab_ty OCCURS 0 WITH HEADER LINE.

Listing 7.12 Definition of Internal Table with Header Line

The optional addition HEADER LINE creates an additional data object with the same

name and the line type of an internal table. The header line is not an internal table,

but it’s a structure that can hold a single table record.

Warning

Internal tables with header lines are not supported in object-oriented program-

ming.

Using ABAP Internal Tables

In the previous section we discussed the syntax for defining internal tables. In this

section, we will discuss how to populate an internal table and how to access an

internal table, including sorting and the various other internal table operations.

We will assume in this section that the internal table does not have a header line,

and a table-line-compatible work area is defined for the various operations

because we do not recommend that you define internal tables with a header line in

newer releases.

Appending Lines to Internal Tables

As a developer, your first task in the program is to fill the internal table once you

have defined it. To add new records to an internal table you use the APPEND or
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 7 185
INSERT statement. You can also use the SELECT statement to populate them from

the database table (see Chapter 9 for syntax and detail).

The following is the syntax to populate an internal table with a select clause:

DATA: mara_lt TYPE STANDARD TABLE OF mara.
SELECT * FROM mara INTO TABLE mara_lt.

Here, MARA is a database table in SAP system, and mara_lt is an internal table. The

SELECT statement populates the content of the MARA table into the internal table

mara_lt.

The APPEND statement is normally used only for the standard internal table. How-

ever, it can also be used to append a sorted table if the line to be appended main-

tains the sort order, but we recommend that you don’t use APPEND with the sorted

internal table, because it would be difficult to know if this would be the case. The

APPEND statement can be used to append either one or several table lines to stan-

dard internal tables. You populate the work area and then transfer the work area

content to the standard internal table.

The syntax to append internal tables is as follows:

DATA: itab_wa TYPE mara.
DATA: itab_lt TYPE STANDARD TABLE OF mara.
APPEND itab_wa TO itab_lt.

itab_wa is the work area of the table, and itab_lt is the internal table itself. You

would have to populate the work area in the program and then use the above

APPEND statement to append a single line into the internal table. The APPEND state-

ment appends the line as the last line in the internal table. You could use the fol-

lowing syntax to append multiple lines to an internal table:

APPEND lines OF itab1 TO itab2.
APPEND lines OF itab1 FROM 1 TO 50 TO itab2.

The above APPEND statement appends the lines of internal table itab1 to internal

table itab2. If the addition FROM <idx1> TO <idx2> is specified in the APPEND state-

ment, then only the rows from <idx1> to <idx2> will be transferred from itab1 to

itab2.

Inserting Lines in an Internal Table

The INSERT statement is also used to insert lines into an internal table and is gen-

erally used to fill sorted and hashed tables. Unlike the APPEND statement, which

only appends lines at the end of the internal table, you can insert lines anywhere

in the internal table using INSERT. For sorted internal tables, the new line is

Chapter 7 Internal Table Definition and Use186
inserted according to the sort sequence as specified by the table key definition of

the internal table; duplicate lines are inserted above the existing line with the

same key. Duplicated records can be inserted for sorted internal tables with non-

unique keys, but they cannot be inserted for an internal table with a unique key.

With a hashed internal table, the lines are inserted in the hash management table

according to its table key.

Listing 7.13 displays the syntax for the INSERT statement.

TYPES: BEGIN OF line,
material TYPE matnr,
plant TYPE werks_d,
quantity TYPE menge_d,

END OF line.
DATA: itab01 TYPE SORTED TABLE OF line

WITH UNIQUE KEY material.
DATA: itab_wa TYPE line.
itab_wa-material = 'M2'.
itab_wa-plant = '1000'.
itab_wa-quantity = 100.
INSERT itab_wa INTO TABLE itab01.

itab_wa-material = 'M1'.
itab_wa-plant = '1000'.
itab_wa-quantity = 200.
INSERT itab_wa INTO TABLE itab01.

itab_wa-material = 'M3'.
itab_wa-plant = '1000'.
itab_wa-quantity = 100.
INSERT itab_wa INTO TABLE itab01.

Listing 7.13 Code for the INSERT Statement

The INSERT statement inserts the content of the work area itab_wa into an inter-

nal table itab1 in the sort sequence specified by the key definition. The work area

has to be populated in the program before transferring the lines into the internal

table.

The following is the syntax to insert multiple lines into an internal table from

another internal table:

INSERT LINES OF itab1 [FROM <idx1>] [TO <idx2>]
INTO TABLE itab2.

The above statement inserts lines from internal table itab1 into table itab2. It

inserts the lines from <idx1> to <idx2> of table itab1 into table itab2 if the FROM

<idx1> and TO <idx2> addition is specified in the INSERT statement; otherwise, all
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 7 187
records are transferred. The multiple lines INSERT statement follows the rules of

inserting the single table lines for the various kinds of internal table; for example,

for a sorted internal table, the sort order will be maintained.

Move-Corresponding for an Internal Table

With SAP NetWeaver 7.40 SP05, the operand of the MOVE-CORRESPONDING state-

ment can be an internal table; this has been enabled by the new variant of the

MOVE-CORRESPONDING statement that assigns the identically named components of

the internal table row by row.

The following example shows the syntax of the MOVE-CORRESPONDING statement

for an internal table:

MOVE-CORRESPONDING itab1 TO itab2.

In the preceding statement, the identically named components of the row type of

the internal tables itab1 and itab2 are searched for and assigned from itab1 to

itab2.

Listing 7.14 shows another variant of the MOVE-CORRESPONDING statement with the

EXPANDING NESTED TABLES addition.

TYPES: BEGIN OF ty_marc1,
matnr TYPE matnr,
werks TYPE werks,
ekgrp TYPE ekgrp,
dismm TYPE dismm,
dispo TYPE dispo,

END OF ty_marc1.

TYPES: BEGIN OF ty_marc2,
matnr TYPE matnr,
werks TYPE werks,
ekgrp TYPE ekgrp,

END OF ty_marc2.

TYPES: BEGIN OF ty_itab1,
matnr TYPE matnr,
bismt TYPE bismt,
marc TYPE STANDARD TABLE OF ty_marc1 WITH EMPTY KEY,

END OF ty_itab1.

TYPES: BEGIN OF ty_itab2,
matnr TYPE matnr,
bismt TYPE bismt,
marc TYPE STANDARD TABLE OF ty_marc2 WITH EMPTY KEY,

END OF ty_itab2.

Chapter 7 Internal Table Definition and Use188
DATA: matplant TYPE STANDARD TABLE OF ty_marc1,
itab1 TYPE STANDARD TABLE OF ty_itab1,
itab2 TYPE STANDARD TABLE OF ty_itab2.

*Fill
table
itab1
SELECT matnr bismt FROM mara

INTO CORRESPONDING FIELDS OF TABLE itab1
WHERE mtart =

'FERT'
.

LOOP AT itab1 INTO DATA(wa).
SELECT matnr werks ekgrp dismm dispo FROM marc

INTO TABLE matplant
WHERE matnr = wa-matnr.

MOVE-CORRESPONDING matplant TO wa-marc.
MODIFY itab1 FROM wa TRANSPORTING marc.
CLEAR matplant.

ENDLOOP.

MOVE-CORRESPONDING itab1 TO itab2 EXPANDING NESTED TABLES.

Listing 7.14 Syntax for MOVE-CORRESPONDING for Internal Tables

In Listing 7.14, with the addition of EXPANDING NESTED TABLES, the components of

the row type are resolved at every hierarchy level. The identical names compo-

nents of itab1 and itab2 are searched for, including itab1-marc and itab2-marc,

and assigned to itab2, including individual component itab2-marc.

The following syntax of MOVE-CORRESPONDING appends the lines of itab1 to itab2

and does not delete the existing contents of itab2:

MOVE-CORRESPONDING itab1 TO itab2 KEEPING TARGET LINES.

Appending Summarized Lines into an Internal Table

The COLLECT statement can also be used to insert lines into an internal table. The

COLLECT statement works only with internal tables that have a flat structure and is

used to sum or add up the numeric table fields. For a standard internal table, the

COLLECT statement sums the numeric field values if a line with the key values

already exists; otherwise, it appends the line to the end of the internal table. Simi-

larly, for sorted and hashed tables, the COLLECT statement sums up the numeric

field values if a line with the same key value already exists; otherwise, it inserts the
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 7 189
line into the internal table. The system field sy-tabix contains the index of the

line inserted or modified in the collect statement.

Listing 7.15 displays the syntax and usage of the COLLECT statement. The example

code uses the COLLECT statement to populate an internal table. COLLECT sums up

the numeric value if the line already exists in the internal table. In this example, it

will sum up the quantity if the table record for material already exists.

TYPES: BEGIN OF line,
matnr TYPE matnr,
qty1 TYPE I,

END OF line.
DATA: itab_wa TYPE line.
DATA: itab01 TYPE STANDARD TABLE OF line.

itab_wa-matnr = 'M1'.
itab_wa-qty1 = 10.

COLLECT itab_wa INTO itab01.
WRITE: /'Index of inserted/modified line'
WRITE sy-tabix.
itab_wa-matnr = 'M2'.
itab_wa-qty1 = 20.

COLLECT itab_wa INTO itab01.
WRITE: / sy-tabix.
itab_wa-matnr = 'M1'.
itab_wa-qty1 = 10.

COLLECT itab_wa INTO itab01.
WRITE: / sy-tabix.
itab_wa-matnr = 'M2'.
itab_wa-qty1 = 40.

COLLECT itab_wa INTO itab01.
WRITE: / sy-tabix.

Clear itab_wa.
LOOP AT itab01 into itab_wa.

WRITE: / itab_wa-matnr, itab_wa-qty.
ENDLOOP.

Listing 7.15 Syntax of COLLECT Statement for Internal Table

The following is the output of Listing 7.15:

Index of inserted/modified line: 1 2 1 2
M1, 20
M2, 60

Reading Internal Table Lines

You use the READ TABLE statement to read individual lines from the internal table.

To use the read statement, you have to provide either the key or the index of the

internal table line you want to read. The READ TABLE statement processes one

Chapter 7 Internal Table Definition and Use190
record at a time, but you should use the LOOP statement if you want to process

multiple lines from the internal table. The LOOP statement is discussed in detail

later in this chapter.

The simplest syntax to read based on the table index is as follows:

DATA: itab_wa TYPE marc,
itab_lt TYPE STANDARD TABLE OF marc.

FIELD-SYMBOLS: <fs> TYPE marc
READ TABLE itab INDEX 10 INTO itab_wa

This READ TABLE statement reads the internal table line with INDEX 10 and transfers

the content to the work area itab_wa. The result of the READ statement is trans-

ferred to itab_wa only if the READ statement successfully finds a line with INDEX 10

in the internal table itab. SY-SUBRC is set to 4 if no record corresponding to the

above READ statement is found in the internal table; otherwise, it is set to 0.

This following statement reads the table line and assigns it the field symbol. The

result of the READ TABLE statement is transferred to the work area or field symbol

only if the READ TABLE statement successfully finds a line corresponding to condi-

tions specified for the READ statement. SY-SUBRC is set to 4 if no record is found for

the READ statement; otherwise, it is set to 0.

READ TABLE itab WITH KEY matnr = 'M1' ASSIGNING <fs>.
READ TABLE itab INDEX 10 ASSIGNING <FS>.

The data type of the work area should be compatible with the line type of the inter-

nal table. An easy way to define a work area for the internal table is as follows:

DATA: wa LIKE LINE OF itab.

You can use the TRANSPORTING addition after the INTO wa statement. With this

option, you can select the components or fields that you want to be transferred to

the work area:

DATA: idx TYPE syindex.
idx = 10.
READ TABLE itab INDEX idx INTO wa

TRANSPORTING comp1 comp3.

This statement reads the internal table itab with INDEX idx and copies the content

of the components or fields comp1 and comp3 from the table line to the work area

wa.

If you specify the ASSIGNING <fs> addition, then the table line with the index idx

is assigned to the field symbol <fs>. This addition is helpful if you want to modify

the selected line after the READ statement. You can modify the table line directly by
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 7 191
using the field symbol; otherwise, you have to use the MODIFY statement to modify

the table line.

Note

It is important to note that the field symbol points to the table line in the memory,

so you can modify the table line directly via the field symbol and improve perfor-

mance.

Listing 7.16 displays the example code to modify a table record.

TYPES: BEGIN OF line,
matnr TYPE matnr,
qty1 TYPE I,

END OF line.
DATA: itab_wa TYPE line.
DATA: itab_lt TYPE STANDARD TABLE OF line.

itab_wa-matnr = 'M1'.
itab_wa-qty1 = 10.

APPEND itab_wa to itab_lt.
itab_wa-matnr = 'M2'.
itab_wa-qty1 = 20.

APPEND itab_wa to itab_lt.
itab_wa-matnr = 'M3'.
itab_wa-qty1 = 30.

APPEND itab_wa to itab_lt.
LOOP AT itab_lt WHERE matnr = 'M1' INTO itab_wa.

itab_wa-qty1 = 100.
MODIFY itab_lt FROM itab_wa TRANSPORTING qty1.

ENDLOOP.

Listing 7.16 Code to APPEND and MODIFY an Internal Table

However, with the READ TABLE statement, the above code could also be imple-

mented as follows:

READ TABLE itab_lt key matnr = 'M1' ASSIGNING <fs>.
<fs>-qty1 = 100.

You can also read the internal table record based on any field in the table record.

The following is the example code for the READ statement with the WITH KEY addi-

tion:

TYPES: BEGIN OF line,
kunnr TYPE kunnr, "Customer no.
land TYPE land1_gp, "Country
name1 TYPE name1_gp, "Name
ort01 TYPE ort01_gp, "City
pstlz TYPE pstlz, "ZIP code

END OF line.

Chapter 7 Internal Table Definition and Use192
DATA: itab02 TYPE STANDARD TABLE of line.
DATA: wa LIKE LINE OF itab02.
SELECT * from KNA1 INTO CORRESPONDING FIELDS OF TABLE itab02.
SORT itab02 by kunnr.
READ TABLE itab02 WITH KEY kunnr = '12345'
INTO wa BINARY SEARCH.

With the above READ statement, you specify the search key to read the line from the

internal table. You could use any component or field of the table line to search the

table. The content of the first found line of the internal table that matches the search

key is transferred to the work area. The above READ statement provides you with

only one record even if more than one record matches the search key. You have to

use the LOOP statement if you want all of the records to match the search key.

Standard internal tables are subject to sequential search with this READ statement.

With the addition BINARY SEARCH, the search is binary instead of sequential, which

considerably improves search performance at runtime. For binary search, the

standard internal table must be sorted by the search key in ascending order; oth-

erwise, the search result will not find the correct row or record. The search algo-

rithm depends on the table type if you do not specify the BINARY SEARCH addition:

� For sorted internal tables, the search is always binary, and the addition BINARY

SEARCH has no effect.

� For a hashed internal table the hash algorithm is used to search if the specified

key is the internal table key; otherwise, the search is sequential. The addition

BINARY SEARCH is not permitted for hashed internal tables.

Tip

The BINARY SEARCH addition is valid for standard internal tables only. The stan-

dard internal table should be sorted to use the BINARY SEARCH addition:

� The addition BINARY SEARCH does not have any effect on the READ statement

for sorted internal tables.

� The BINARY SEARCH addition is not permitted with the READ statement for

hashed internal tables.

The other variants of the READ statements are:

READ TABLE itab02 FROM wa ASSIGNING <fs>

and

READ TABLE itab02 WITH TABLE KEY
kunnr = '12345' pstlz = '95118'.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 7 193
For the first variant, the work area must be a data object that is compatible with the

line type of the internal table. The search is performed based on the content of the

work area wa. The result of the READ TABLE statement for which the values in the

columns of the table match the values of the corresponding components of the

work area is assigned to the field symbol.

For the second READ statement variant, you have to specify the full table key to

read the line of the internal table. If you cannot provide the full key, then you

should use WITH KEY and not WITH TABLE KEY. Standard tables are read using a

sequential search, sorted internal tables are searched using the binary search, and

for hashed internal tables, the hash algorithm is used to search for the table line.

As of release 7.0 EHP 2, the row to be read can be specified using the secondary key.

Processing Multiple Lines of an Internal Table

You process internal table lines sequentially by using the LOOP and ENDLOOP state-

ments. This allows you to process multiple lines in the internal table sequentially,

one after the other. Listing 7.17 is an example code for the LOOP statement.

TYPES: BEGIN OF itab_ty,
matnr TYPE matnr,
werks TYPE werks_d,

END OF itab_ty.
DATA: itab_lt TYPE STANDARD TABLE OF itab_ty.
DATA: wa LIKE LINE OF itab_lt.
SELECT matnr werks FROM marc INTO TABLE itab_lt.
LOOP at itab_lt into wa.

WRITE: / wa-matnr, wa-werks.
ENDLOOP.

Listing 7.17 Syntax for the LOOP Statement

The LOOP statement in Listing 7.17 reads each line one at a time and transfers that

table line to the work area. The work area wa data object should be compatible with

the line type of the internal table. You can use the addition TRANSPORTING to spec-

ify the fields to be transferred to the work area. The internal table lines are avail-

able within the LOOP block, and you can perform operations on the individual lines

within the loop statement.

Chapter 7 Internal Table Definition and Use194
Other variants of the LOOP statement are:

LOOP AT itab_lt INTO wa WHERE matnr = '12345'.
WRITE: / wa-matnr, wa-werks.

ENDLOOP.

and

LOOP AT itab_lt FROM 1 TO 10 INTO wa.
WRITE: / wa-matnr, wa-werks.

ENDLOOP

In the first syntax variant, you have the option to specify the conditional selection

of the table lines from the internal table by specifying the WHERE condition for the

LOOP statement. This statement sequentially searches each line of the table for the

condition specified with the WHERE condition. With the second variant of the LOOP

statement recently mentioned, you can limit the number of table lines to be pro-

cessed by specifying the FROM idx1 or TO idx2 for the LOOP statement.

As of SAP NetWeaver 7.0 EHP 2, the WHERE condition in the LOOP AT itab_lt state-

ment can be specified dynamically. The processing sequence for the LOOP state-

ment can be controlled using a secondary key.

You can also perform control-level processing within the statement block of the

LOOP statement. The control statements for the control-level processing are within

the AT and ENDAT statements. The statement block within the AT and ENDAT state-

ments is executed at the control break. The control break happens when the con-

trol structure for the internal table changes.

The following syntax displays control break statements when looping through the

internal table.

LOOP at itab INTO wa.
AT FIRST.

...
ENDAT.
AT NEW comp1.

...
ENDAT.
AT END of comp1.

...
ENDAT.
AT LAST.

...
ENDAT.

ENDLOOP.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 7 195
For control-level processing to work properly, these rules must be followed:

� The internal table should be sorted in the sequence of the component of the line

type.

� The internal table cannot be modified within the LOOP statement.

� The conditional selection of the internal table lines should not be specified for

the LOOP statement; that is, you cannot use the WHERE addition to the LOOP state-

ment.

Modifying the Internal Table Lines

You use the MODIFY statement to change the content of the lines of the internal

table. You can also modify the internal table line by modifying the field symbol

<fs> or reference variable <dref>, which is linked to the line of the internal table as

a result of the READ statement.

The following syntax modifies the internal table using the MODIFY statement:

TYPES: BEGIN OF line,
material TYPE matnr,
plant TYPE werks_d,
fld1 TYPE I,
fld2 TYPE I,

END OF line.
DATA: itab TYPE STANDARD TABLE OF line.
DATA: wa TYPE line.
MODIFY TABLE itab FROM wa.
MODIFY TABLE itab FROM wa TRANSPORTING fld1 fld2.

This code searches for the internal table line whose key components match the

key values of the work area and then modifies the selected internal table line. With

the addition TRANSPORTING, only the fields specified after the TRANSPORTING state-

ment are modified.

You can modify multiple lines of the internal table with the following syntax:

MODIFY itab FROM wa TRANSPORTING flds1 fld2
WHERE material = '12345'.

This modifies all the table lines that satisfy the logical WHERE condition. With the

TRANSPORTING addition, only the components or fields specified after the TRANS-

PORTING statement are modified.

As of release 7.0 EHP 2, the WHERE condition for the MODIFY itab can be specified

dynamically. The rows to be modified can be specified using a secondary key.

Chapter 7 Internal Table Definition and Use196
The following MODIFY statement modifies the internal table line with the INDEX idx

using the contents of the work area wa. The work area wa should be compatible

with the line type of the internal table.

MODIFY itab FROM wa INDEX idx.

Listing 7.18 displays the use of the MODIFY statement within the LOOP block. The

MODIFY statement modifies the current internal table line within the LOOP state-

ment with the contents of the work area wa.

TYPES: BEGIN OF line,
material TYPE matnr,
plant TYPE werks_d,
fld1 TYPE I,
fld2 TYPE I,

END OF line.
DATA: itab TYPE STANDARD TABLE OF line.
DATA: wa TYPE line.
LOOP AT itab INTO wa.
wa-fld1 = 100.
wa-fld2 = 200.
MODIFY itab FROM wa.

ENDLOOP.

or

LOOP AT itab INTO wa.
wa-fld1 = 100.
wa-fld2 = 200.
MODIFY itab FROM wa TRANSPORTING fld1 fld2.

ENDLOOP.

Listing 7.18 Use of Modify Statement within the LOOP Statement

Deleting Internal Table Lines

You use the DELETE statement to delete lines from an internal table. The following

is the syntax of the delete statement:

DELETE itab INDEX idx.

This statement deletes the table line with the INDEX idx.

The following syntax deletes multiple lines of the internal table specified by the

index range or the logical expression specified by the WHERE addition:

DELETE itab FROM idx1 TO idx2.

or

DELETE itab WHERE material = '12345'.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 7 197
The following statement deletes multiple lines from the internal table that is

sorted. This statement compares the table components and deletes the adjacent

duplicates. It makes sense to use the following statement as long as the contents of

the internal table are sorted:

DELETE ADJACENT DUPLICATES FROM itab
COMPARING material plant.

or

DELETE ADJACENT DUPLICATES FROM itab.

The following delete syntax deletes the internal table lines based on the table key:

DELETE TABLE itab WITH TABLE KEY
material = '12345' plant = 'abcd'.

As of release 7.0 EHP 2, the WHERE condition for the DELETE statement can be speci-

fied dynamically. The row to be deleted can be specified using a secondary key.

Sorting Internal Tables

You use the SORT statement to sort the internal table. You can sort only a standard

or a hashed table using the SORT statement. You cannot use the SORT statement for

a sorted internal table because, by definition, it is already sorted.

The following is the syntax for the SORT statement:

SORT itab.
SORT itab ASCENDING.
SORT itab DESCENDING.

This statement sorts the internal table in ascending order by its key. By default, the

system sorts the internal table in ASCENDING order if you do not specify the addition

ASCENDING or DESCENDING. Other variants of the SORT statement are the following:

SORT itab BY material plant DESCENDING.
SORT itab AS TEXT.

The first statement sorts the internal table by the field’s material and plant in

descending order. The second SORT statement with the addition AS TEXT sorts the

character type components according to the current text environment setting

specified in the user master record. Without the AS TEXT addition, the internal

table is sorted according to the encoding specified by the hardware platform.

As of SAP NetWeaver 7.40 SP2, it is possible to specify the sort key dynamically by

using the following syntax:

SORT itab BY (stab).

Chapter 7 Internal Table Definition and Use198
The addition BY sorts the table by the component specified in the internal table

stab. Each row of the internal table tab defines a component of the sort key, and

the priority of the sort is based on the order of rows in the stab. The table is not

sorted if the internal table stab is initial. The internal table stab is declared as

the standrad table of type ABAP_SORTORDER_TAB of the ABAP Dictionary, and the

row type is the ABAP Dictionary structure ABAP_SORTORDER.

You must populate the component of itab for the sort key in the field ABAP_SOR-

TORDER-NAME. The sort order can be specified in the field ABAP_SORTORDER-

DESCENDING. If the field value is initial, then sort is performed in ascending order,

and if the value is X, then sort is performed in descending order. You can specify

text sorting by populating the field ABAP_SORTORDER-ASTEXT with the value X. If the

value is initial, then the character-like components are sorted in accordance with

their binary representation.

Emptying the Internal Table

Depending on the table definition, you can empty the internal table by using the

CLEAR or REFRESH statement. You can clear an internal table with a header line with

the following statement:

CLEAR itab[].

or

REFRESH itab.

The above CLEAR and REFRESH statements delete the table body lines only, but you

can use the following syntax to clear the header line and the body of the internal

table:

CLEAR: itab, itab[].

or

CLEAR: itab.
REFRESH itab.

The CLEAR statement with square brackets around itab[] or REFRESH itab deletes

or initializes the internal table body lines, whereas the CLEAR itab statement clears

the header line.

You can use the CLEAR statement to delete or initialize the body lines of the inter-

nal table without a header line. The following statement deletes or initializes the

body lines of the internal table without header lines:

CLEAR itab.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 7 199
The FREE statement works like the REFRESH statement, but in addition, it releases

the memory area of the internal table. With the FREE statement, the table body is

deleted, and the memory area reserved for the internal table is released. The syn-

tax for the FREE statement is as follows:

FREE itab.

Table Expression

Table expression is a new feature introduced in SAP NetWeaver 7.40 SP02. Table

expression allows a read to be perform at the operand position; the operand posi-

tion could be the read position or the write position. The table expression consists

of an internal table followed by the row type specified in the square bracket. The

expression finds the specified row type from the internal table and returns it as

the result of the corresponding row type. The expression could be based on the

index read, read using a free key, or read using a table key. If the table line is not

found, then the exception CX_SY_ITAB_LINE_NOT_FOUND is raised. Listing 7.19 pres-

ents the syntax and an example of the table expression.

itab[itab_line].

The following table expression code snippet in Listing 7.19 is for accessing with a

table index.

TYPES: BEGIN OF line,
matnr TYPE matnr,
werks TYPE werks_d,
ekgrp TYPE ekgrp,
dismm TYPE dismm,

END OF line.
DATA: itab TYPE STANDARD TABLE OF line.

DATA(wa) = itab[2].

Listing 7.19 Syntax of Table Expression

The following code snippet presents the table expression syntax for accessing

using a free key:

DATA(wa) = itab[matnr = ‘123’ werks = ‘1000’].

Listing 7.20 displays the use of table expression with a table key.

TYPES: BEGIN OF line,
matnr TYPE matnr,
werks TYPE werks_d,
ekgrp TYPE ekgrp,

Chapter 7 Internal Table Definition and Use200
dismm TYPE dismm,
END OF line.

DATA: itab TYPE STANDARD TABLE OF line WITH KEY primary_
key COMPONENTS matnr werks.
SELECT matnr werks ekgrp dismm FROM marc

INTO TABLE itab.

DATA(wa) = itab[KEY primary_key COMPONENTS matnr = '1400-
500' werks = '1000'].

WRITE:/ wa-matnr, wa-werks, wa-ekgrp, wa-dismm.

Listing 7.20 Syntax for Table Expression with Table Key

Predefined functions for internal tables have been introduced in SAP NetWeaver

7.4 SP02 to access the system fields within the program.

The predefined function LINE_INDEX for internal tables can be used to identify the

index of the row in an internal table. The function will not raise an exception if the

row is not found; instead, it will return value 0. The table expression with the

index specified to read the row number from the internal table cannot be used for

the LINE_INDEX function. The following example presents the syntax and example

for the predefined LINE_INDEX function for an internal table:

LINE_INDEX(table_exp).

Based on the following code, LINE_INDEX will return the row number found by the

table expression:

DATA(idx1) = LINE_INDEX(itab[matnr = '1400-500' werks = '1000']).
WRITE:/ 'index:-' , idx1.

The predefined function LINE_EXISTS can be used to check for the existence of a

table row specified by table expression. Listing 7.21 presents an example of the use

of LINE_EXISTS function:

IF line_exists(itab[matnr = '1400-500' werks = '1000']).
DATA(wa2) = itab[KEY primary_key COMPONENTS matnr = '1400-

500' werks = '1000'].
WRITE:/ 'Line exists', wa-matnr, wa-werks.

ENDIF.

Listing 7.21 Example Code for LINE_EXISTS
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Practice Questions Chapter 7 201
Important Terminology

You should know how to define internal tables in the program and be aware of dif-

ferent kinds of internal tables such as standard, sorted, and hashed internal tables.

� The APPEND and INSERT statements are used to populate the internal table.

� You use the READ TABLE statement to read individual records of an internal

table. You can also use the addition INDEX or KEY with the READ TABLE statement

to read individual records from the internal table.

� The LOOP statement is used to process individual internal table lines. This state-

ment loops through the internal table and places the individual table records in

the work area of the internal table.

� The MODIFY statement is used to modify existing records of the internal table. If

the MODIFY command is used in a LOOP statement to modify the internal table,

then the current line of the internal table is changed.

� The DELETE statement is used to delete a record of an internal table. You can also

use the DELETE statement with the addition WITH TABLE KEY to delete records

from the internal table for the specified key in the DELETE statement.

� The SORT statement is used to sort the internal table.

Practice Questions

The following practice questions will help you evaluate your understanding of the

topic. The questions shown are similar in nature to those found on the certifica-

tion examination. Although none of these questions will be found on the exam

itself, they allow you to review your knowledge of the subject. Select the correct

answers and then check the completeness of your answers in the following solu-

tion section. Remember that you must select all correct answers and only correct

answers in the exam to receive credit for the question.

1. How many kinds of internal tables are supported in the ABAP language?

� A. 2

� B. 3

� C. 1

Chapter 7 Internal Table Definition and Use202
2. Which of the following statements are true? Select all that apply.

� A. Standard tables can be accessed by index.

� B. Standard tables cannot be accessed by index.

� C. A sorted table is always accessed by a unique key.

� D. Hashed tables are always accessed by index.

� E. Hashed tables are accessed by a unique key.

3. The OCCURS statement is required to define an internal table with a header line.

� A. True

� B. False

4. You can use the APPEND statement to fill a sorted internal table.

� A. True

� B. False

5. You cannot use the INSERT statement to insert lines into a standard internal

table.

� A. True

� B. False

6. You can use a table with a header line for object-oriented programming.

� A. True

� B. False

7. An internal table line type with a deep or nested structure can be defined for

internal tables with a header line.

� A. True

� B. False

8. Internal tables cannot have a deep or nested structure in their line type.

� A. True

� B. False
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Practice Questions Chapter 7 203
9. The READ statement with the addition BINARY SEARCH for a sorted internal table

is better for performance.

� A. True

� B. False

10. The READ statement with the BINARY SEARCH addition cannot be used for a

sorted internal table.

� A. True

� B. False

11. The BINARY SEARCH addition cannot be used with the READ statement for the

HASHED table.

� A. True

� B. False

12. Which of the following is a true statement? Select all that apply.

� A. A sorted table can have a unique or a non-unique key.

� B. A standard table should always have a unique key.

� C. A hashed table should always have a unique table key.

13. You can empty the body of the internal table itab with a header line using the

CLEAR itab statement.

� A. True

� B. False

14. You can modify an internal table by using the UPDATE statement.

� A. True

� B. False

15. Internal tables can also be modified after executing the READ statement with

the addition ASSIGNING.

� A. True

� B. False

Chapter 7 Internal Table Definition and Use204
16. You cannot use a SORT statement for a sorted internal table.

� A. True

� B. False

17. An internal table can have primary keys as well as secondary keys.

� A. True

� B. False

18. An internal table can have at most 15 secondary keys.

� A. True

� B. False

19. An internal table is an ABAP program variable.

� A. True

� B. False

20. An internal table can be defined using the DATA statement.

� A. True

� B. False

Practice Question Answers and Explanations

1. Correct answer: B

There are three types of internal tables: standard, sorted, and hashed.

2. Correct answers: A, E

A standard table can be accessed by an index or the key. A hashed table is

accessed by the unique key, and it uses hash algorithms to access the table

record. A sorted table can be accessed by the index or the key. A sorted table can

have a unique or a non-unique key.

3. Correct answer: B

You require an OCCURS addition to declare a internal table with a header line, but

you can define an internal table with a header line using the WITH HEADER LINE

addition.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Practice Question Answers and Explanations Chapter 7 205
4. Correct answer: A

Sorted tables can be filled using the APPEND statement, provided the content of

the records being appended are in sort order. If you are not sure about the sort

order of the record contents, then the INSERT statement should be used.

5. Correct answer: B

You can use the INSERT statement to insert records in a standard internal table.

The record will be added to the end of the table.

6. Correct answer: B

You cannot use an internal table with a header line in object-oriented program-

ming.

7. Correct answer: B

You cannot define an internal table with a header line that has a deep or nested

structure.

8. Correct answer: B

You can define internal tables with deep or nested structure line types, but the

internal table must be one without a header line.

9. Correct answer: B

BINARY SEARCH does not have any effect on the sorted internal table. Sorted

internal tables always use a binary search to read the table records with the

READ statement.

10. Correct answer: B

You can use the BINARY SEARCH with the READ statement for sorted tables, but it

does not have any effect.

11. Correct answer: A

You cannot use BINARY SEARCH with the READ statement to read hashed internal

tables. Hashed internal tables require a unique key to read the internal table

record, and they use a hash algorithm to find the table record.

12. Correct answers: A, C

The standard internal table can have a non-unique key, and the hashed internal

table must always have a unique key.

The sorted table can have a unique or a non-unique key.

13. Correct answer: B

You cannot clear an internal table with a header line with the CLEAR itab state-

ment. To empty the table body you have to use the CLEAR itab[] statement.

Chapter 7 Internal Table Definition and Use206
14. Correct answer: B

The UPDATE statement cannot be used to modify the internal table. You use the

MODIFY statement to modify the internal table.

15. Correct answer: A

You can modify internal tables using the ASSIGNING statement because the

ASSIGNING points to the memory address of the table record or field.

16. Correct answer: A

A sorted internal table is sorted by default, and hence you cannot use the SORT

statement to sort a sorted internal table.

17. Correct answer: A

As of release 7.0 EHP 2, an internal table can have a primary key and optional

secondary key.

18. Correct answer: A

An internal table can have at most 15 secondary keys.

19. Correct answer: A

An internal table is a program variable.

20. Correct answer: A

An internal table is a variable; hence it is defined using the DATA statement.

Takeaway

You need to understand the syntax to create internal tables, be able to define a

data type, and use it to define an internal table in the program. You need to under-

stand the difference between internal tables with header lines and without header

lines, and you should know how to define such a table in the program. You also

must be aware that the internal table with a header line is not supported in ABAP

Objects programming. You should be able to differentiate between the different

kinds of internal tables, such as standard, sorted, and hashed, and be able to use

them in a program. You should also be able to populate internal tables with the

APPEND and INSERT statements and be able to perform various operations on the

internal table. You should know the syntax to update, modify, delete, and read

individual records from the internal table.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Takeaway Chapter 7 207
Refresher

You should now be able to describe internal tables and their use in the ABAP pro-

gramming language. You should know the keywords and the syntax to define and

access the internal table. You should be able to use internal tables in a program to

store data temporarily and be able to process the data in the table.

Table 7.2 repeats the key concepts of this chapter in short form.

You learned in detail the concepts of internal tables, the different kinds of internal

tables, and the valid operations on each kind of internal table. You should know

the syntax to define internal tables, access internal tables, and process the table

records in the internal table. This knowledge will allow you to easily pass this topic

on the certification examination.

Key Concept Definition

Internal table An internal table is a local program variable-data object and is

used to store multiple structured data records temporarily in

memory.

Kinds of internal tables There are three kinds of internal tables: standard table, sorted

table, and hashed table.

Standard internal table Standard tables can have a unique or a non-unique key and

can be accessed with the key or an index. They can be filled

with the APPEND or INSERT statement, or you can use the

SELECT statement to populate them from the database (see

Chapter 9).

Sorted internal table Sorted tables can have a unique or a non-unique key. The

table records are stored in a sorted order and by default are

sorted in ascending order. You fill the sorted internal table

with the INSERT statement.

Hashed internal table Hashed internal tables must have a unique key that you must

use to access the table record. A hash algorithm is used to

read the hashed internal table.

Table 7.2 Key Concept Refresher

© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Chapter 8

SQL Statements Including
Update Strategies

Techniques You’ll Master:

� Understand the purpose and benefits of using a data model in

application development

� Access specific columns and rows within a particular database

table or tables

� Explain the terms database logical unit of work (LUW) and SAP

Logical Unit of Work (LUW) and differentiate between them

� Bundle changes to database tables in the client-server architec-

ture of an SAP system

� Understand the role of lock objects and how to set and release

SAP locks

� Perform database changes using various update techniques

Chapter 8 SQL Statements Including Update Strategies210
The three-tier architecture of SAP provides user interaction through the presenta-

tion layer. This in turn controls the business logic running on an application

server, which may retrieve and store data in the database server. The system is

designed as database-neutral, meaning that it works with several databases. Nor-

mally, from your perspective, the underlying database is not a prime concern.

In this chapter, we touch briefly on data modeling, or table design. We follow this

with methods of retrieving data from the database and efficient use of the data-

base (using SQL). Lastly, the chapter covers logical units of work (LUW), lock

objects, and update tasks.

Each of these topics is covered separately, and they are followed by practice ques-

tions and answers.

Real-World Scenario

Imagine you want to develop a new transaction that uses database tables

provided by SAP and new database tables unique to your process. This new

transaction will access data from standard SAP database tables and update

the new database tables based on user interaction through multiple dialog

steps. The transaction will be used by multiple users simultaneously and

needs to provide a consistent state when committing changes to the data-

base.

The transaction will provide access to the records being updated for a single

user, but the database tables not being updated will allow multiple users to

see the data simultaneously. Owing to the complexity of the process, it

requires multiple dialog screens to gather the data for eventual update

across multiple database tables.

The number of records that are updated or posted during the process may

vary anywhere from zero to several thousand at a time. You are tasked with

providing a quickly responding transaction for the user and maintaining a

consistent database state. This means that if any update fails, you will be able

to return to the last consistent state before any change was made.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 8 211
Objectives of This Portion of the Test

The purpose of this portion of the certification examination is to verify that you

have detailed knowledge of how to retrieve data from the database and how to

make changes to database tables so the data remains consistent while allowing the

user to continue to work as efficiently as possible.

This portion of the examination will test your knowledge of Open SQL and differ-

ent mechanisms for making changes. The points that you will need to understand

from this section include the following:

� Data selection techniques from the database

� Update strategies for the database

� Bundling changes to the database

Key Concepts Refresher

Typically, you need to access and change data within the database. Consequently,

you need to understand and be able to perform the following types of tasks when

developing ABAP programs, so you should be able to do the following functions or

processes:

� Design tables for efficient use

� Read data from a single or multiple database tables

� Create and use lock objects

� Select the most appropriate type of update

� Describe a logical unit of work from both a database and an application perspec-

tive

Data Modeling

When you develop business applications, parts of the real world must be repre-

sented as data. A business unit represents an entity, and these entities exist in rela-

tionship with each other and are fixed in the underlying data model. This is

referred to as an entity relationship model (ERM).

You use this data model to implement appropriate table definitions, including

their relationships with each other in the ABAP Dictionary. Activating the table

Chapter 8 SQL Statements Including Update Strategies212
definitions in the ABAP Dictionary automatically creates the corresponding data-

base tables in the database.

Note

SAP uses the so-called flight model throughout its training materials, online docu-

mentation, and ABAP keyword documentation. We use the same model during

our explanation in this section because it is well known and easy to understand

from both a business perspective and a user perspective.

Imagine a simple example from the SAP flight model: If customers of a travel

agency want to travel from one place to another, they require the travel agency to

find the answers to the following questions:

� Which connection offers the flight that is most direct?

� On the day of travel, which flights provide acceptable flight times?

� Dependent on individual’s needs, which is the cheapest flight, the fastest con-

nection, or a connection with a specific arrival time?

This perspective differs from that of a travel agency. The data is stored according to

technical criteria in a central database within the data model that manages this

required data. The amount of data stored far exceeds the requirements of a spe-

cific customer. The travel agency needs to be able to access the data to meet the

individual requirements of the customer using application programs.

The flight data model contains entities for all business information that is logically

connected, such as cities, airports, airlines, flight routes, flights, and so on. These

entities all relate to each other in certain ways:

� Each flight schedule contains exactly one airline, one departure airport, and one

destination airport.

� Each bookable flight always belongs to exactly one existing flight schedule.

You manage the data, without redundancies, using these relationships. The travel

agency can provide any data requested by the customer.

For each entity in the data model, the developer creates a transparent table in the

ABAP Dictionary. The ABAP Dictionary is a platform-independent description of a

database table, not actually the database table itself. However, when a transparent

table is activated in the ABAP Dictionary, a table of the same name is automatically

created within the database.

A transparent table contains fields that allow you to store data records in a struc-

tured way. You declare some of the table fields as key fields when they are to be
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 8 213
used for the unique identification of data records within the database table. The

field or fields used for this unique identification are also called the primary key.

You cannot have data records in the same table with the same primary key; they

each must have a unique primary key.

In the ABAP Dictionary, a transparent table is an implemented description of the

corresponding database table that contains the actual application data. The fields

of the transparent table form the identically named columns of the corresponding

database table. Data elements are normally used to describe the individual fields.

The data elements themselves define keywords and headers and refer to domains

for their technical properties, thus providing the link between the data object and

the domain.

Programmatically, you address data elements in ABAP programs with the TYPE

statement. This allows you to define elementary types that have the type attri-

butes of a specific data element. These type attributes include one of the recog-

nized ABAP Dictionary data types, the field length, and, where appropriate, the

number of decimal places. More information regarding the ABAP Dictionary can

be found in Chapter 10.

As well as the list of fields, the transparent tables contain other attributes that are

required to create a table of the same name in the database and describe its prop-

erties in full:

� The primary key for the database table (key fields)

� The technical properties required by the database to create the database table

(the expected size and expected frequency of access)

� Settings for technologies that can improve performance when accessing the

database table (including secondary indexes and types of buffering)

The definition of a transparent table appears to be very similar to the definition of

a global structure type. Transparent tables can be used in programming in the

same way as structure types. For example, they can be used to define a structured

data object or a structure variable, to type an interface parameter, or as a line type

of a global or local table type. When transparent tables are used this way, only the

list of fields is important. The other properties of the transparent table are irrele-

vant when it is used as a data type.

One other difference between using a transparent table and structure type is that

a transparent table only contains a list of elementary fields, but the components of

a structure type can themselves be structured again, producing nested structures.

Chapter 8 SQL Statements Including Update Strategies214
A component of a structure can even be typed with a table type, producing a deep

structure.

Tip

In older versions of code (prior to release 4.0), transparent tables were often used

as data types. We recommend that they only be used directly in connection with

access to the database, and we do not recommend that transparent tables be

used in defining user interfaces.

The problem is in the unwanted dependency between the definition of database

objects or interfaces and the user interface.

You can call up detailed information on the SAP data model (graphical display,

data records, and fields) within the SAP development environment using Transac-

tion SD11.

Data Retrieval

Every relational database system has its own native SQL, which is, unfortunately,

database-specific. Therefore, if you write an ABAP program using native SQL, you

lose much of the standard functionality of an SAP system (for example, access to

data being buffered on application servers, the use of the database interface, syn-

tax checking, and a number of the performance tools).

Note

The class-based framework ABAP Database Connectivity (ADBC), which has

existed since release 6.10 for dynamic accesses to the Native SQL interface, is now,

as of release 7.02, documented in the ABAP keyword documentation under ADBC.

Warning

As of SAP NetWeaver 7.40, new developments in Native SQL are now only possible

in ADBC, which means that ADBC is now recommended in new programs instead

of the static embedding of Native SQL.

To overcome this restriction, SAP provides Open SQL, which is an SAP-defined

database-independent SQL standard for ABAP. The Open SQL statements are

dynamically converted to the corresponding Native SQL statements of the current

database system and are therefore independent of the database. They allow uni-

form access to the data, regardless of the database system installed.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 8 215
Before programming direct access to database tables, you should look for reuse

components that provide a read process. Four types of reuse components encap-

sulate database access:

� Logical databases (though use of this is now discouraged as logical databases are

considered obsolete)

� Function modules

� BAPIs

� Methods of global classes

If no reuse components are available or if they are usable for your data selection,

you must implement the read process yourself. We recommend that you encapsu-

late the access in a reuse component (that is, create a function module or method

within a global class).

You use the Open SQL statement SELECT to read records from the database. The

SELECT statement contains a series of clauses, each of which has a different task.

An example of the clauses is shown in Listing 8.1:

� The SELECT clause describes which fields or columns of the database table you

want to retrieve.

� The FROM clause identifies the source, either a database table or a view, from

which the data is selected.

� The INTO clause determines the target into which the selected data is placed.

� The WHERE clause specifies the condition that identifies which record or records

you will retrieve.

SELECT fldate planetype seatsocc seatsmax
FROM sflight
INTO (fldate,planetype,seatsocc,seatsmax)
WHERE carrid = flight-carrid
AND connid = flight-connid.

ENDSELECT.

Listing 8.1 SELECT Example

A SELECT statement is a loop. However, there are two variations that do not behave

as a loop: a SELECT SINGLE and an array fetch (using the addition INTO TABLE or

APPENDING TABLE).

You use the first variation, the SELECT SINGLE statement, to read a single record.

Correct usage requires you to provide a unique access to the record; unique access

requires you to specify all key fields in the WHERE clause. The exception to this is the

Chapter 8 SQL Statements Including Update Strategies216
client field, which you do not normally specify because the database interpreter

automatically supplies your current client.

Warning

It is important to remember that you cannot specify a client in the WHERE clause

unless you provide the clause CLIENT SPECIFIED.

You specify a field list with an asterisk (*) to indicate that all fields of the table row

should be read. If you want only specific columns, you list the required fields for

the field list. You use the INTO clause to identify the target data object where the

read data is placed. The data object you specify in the INTO clause should have the

same structure as the field list. As an alternative to specifying a single data object

as the target, you can also specify a list of target fields with the INTO clause.

Note

Only the field types have to match the target. The names of the target structure

are not considered. If you want to use a structure variable as a target that has the

same names as the target list, but has a different structure (additional fields or a

different order of fields), you would use the addition CORRESPONDING FIELDS OF.

This fills only the fields of the same name in the target area. Again, the corre-

sponding field types must be the same; otherwise, a conversion takes place, and it

is possible that incomplete data can be transported to the target field.

This variation has the following advantages:

� The target structure does not have to be left-justified or in the same order as the

field list.

� It is easy to maintain because extending the field list or target structure does

not require any other changes to be made to the program, if there is a field in

the structure that has the same name (and preferably the same type).

The disadvantage of this variation is that it requires more work from the system,

and it therefore does not perform as quickly.

You use a SELECT loop to read several rows of a database table into the program.

You use the WHERE clause to determine which rows are read into the target struc-

ture and processed using the statement block within the loop body. You can also

connect multiple logical conditions within the WHERE clause using AND or OR.

The database provides the data to the database interface of the application server

in blocks called packages. The data is then copied into the target area row by row

for processing.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 8 217
You use the INTO TABLE addition to copy the data into an internal table directly

instead of row by row. Performance on this is faster than processing row by row

because the internal table is filled in blocks, not by rows. Also, because this array

fetch fills the entire internal table in one pass, the SELECT is no longer a loop (the

second variation that is not a loop) and does not require an ENDSELECT. Finally, the

array fetch replaces the contents of the internal table. If you want to append rows

instead, you use the APPENDING TABLE addition.

Arrangement of SELECT and FROM Clauses

Beginning with release 7.50, the FROM clause can now appear in front of the SELECT

clause. If the statement follows this order (FROM clause followed by SELECT clause),

the SELECT clause must be preceded by the addition FIELDS. This can help you

avoid unnecessary round trips of aggregated data between database and applica-

tion server. Placing a subquery in parentheses behind the FROM of an INSERT gener-

ates a single SQL statement. This eliminates the transport of aggregated data to the

application server and back to the database (Listing 8.2).

INSERT demo_sumdist_agg FROM
(SELECT

FROM scarr AS s
INNER JOIN spfli AS p ON s~carrid = p~carrid

FIELDS s~carrname,
p~distid,
SUM(p~distance) AS sum_distance

GROUP BY s~mandt, s~carrname, p~distid).

Listing 8.2 SELECT FROM Example

Unions

The addition UNION creates the union of the results sets of two SELECT statements.

The columns of the results set keep the names defined in the SELECT statement on

the left of UNION. The results set of rows of the SELECT statement on the right of

UNION are inserted into the results set of the SELECT statement on the left of UNION.

The SELECT statement on the right side of UNION can contain a UNION addition, if

enclosed in parentheses (Listing 8.3).

SELECT ' ' AS mark, carrid, connid, fldate, seatsocc
FROM sflight
WHERE carrid = @(to_upper(carrid))

Chapter 8 SQL Statements Including Update Strategies218
UNION SELECT 'X' AS mark,
carrid, connid, fldate, seatsocc
FROM demo_sflight_agg

ORDER BY carrid, connid, mark, fldate, seatsocc
INTO TABLE @DATA(result).

Listing 8.3 SELECT UNION Example

If you examine the online help for SELECT (and you have experience with older

versions of ABAP), you will notice that the INTO clause has been moved to the end

of the SELECT statement (https://help.sap.com/doc/abapdocu_750_index_htm/

7.50/en-US/abapselect.htm). The reason for this is that there can only be one INTO

clause and it is required to be at the end if you are using UNION.

Performance of Database Access

In many cases (specifically with databases other than SAP HANA), the database

accesses occupy much of the runtime of an ABAP application. To not overload the

system and to keep the wait time for a user to a minimum, you should pay special

attention to runtime requirements with database access. A number of technolo-

gies are available in Open SQL that enable you to optimize the runtime.

Each database manages data records within a database table based on the contents

of key fields. If your access to the database table is restricted to all or at least the

first few key fields through the use of the WHERE clause, the database can retrieve

the required data very quickly and efficiently. However, if you try to access data in

a table with fields that are not part of the table key (non-key fields), you’ll find that

the database cannot use its indexing of the records for rapid access. In the worst

case, the entire database table must be searched for the required entries. This is

referred to as a sequential search and can produce very long wait times for the

database access.

If you access the same non-key field search often, you can create a secondary index

defining the fields contained in this non-key field search to improve performance.

If the database optimizer finds a more efficient way of obtaining the requested

data through a different index that more closely matches the WHERE clause, it will

use this secondary index to retrieve the data.

A secondary index is an index created in addition to the primary index of a data-

base table. It can be created or examined by clicking on the Indexes… button on the

application toolbar when displaying a table in either Transaction SE11 or SE80.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

https://help.sap.com/doc/abapdocu_750_index_htm/7.50/en-US/abapselect.htm
https://help.sap.com/doc/abapdocu_750_index_htm/7.50/en-US/abapselect.htm

Key Concepts Refresher Chapter 8 219
Whether an existing secondary index is used in a database, access depends on a

function in the database system known as the Database Optimizer. In Open SQL, it

is not possible or necessary to explicitly specify the use of a secondary index in the

SELECT statement.

Tip

With selections from client-specified database tables, the client is always trans-

mitted to the database. It therefore makes sense to include the client field as the

first field when you define an index for such tables.

With data retrieval, a major proportion of the runtime is needed to transfer the

data from the database server to the application server. If the data is read fre-

quently and seldom changed, you can reduce the runtime by buffering the data on

the application server. The decision to buffer data must be made separately for

each database table. Because a limited amount of buffer space is available on the

application server, the ideal database table is small, read frequently, rarely

changed, and normally accessed directly with its key fields. The buffer settings are

defined in the transparent tables in the ABAP Dictionary with use of the Technical

Settings button.

As of release 7.02, accesses to a table with single record buffering for which an

equality condition is set for all key fields of the primary key in the WHERE clause use

SAP buffering, even if the addition SINGLE is not specified for SELECT. Before

release 7.0 EHP 2, a missing SINGLE meant that SAP buffering was not used.

As of release 7.40 SP02, Open SQL has been further optimized with regard to buff-

ering. If the database table is specified statically, then its secondary indexes are

also respected when generic buffering or full buffering is activated. If SELECT is

used with FOR ALL ENTRIES, then SAP buffering is now also used when accessing

tables with single-record buffering and is no longer bypassed.

Warning

The decision to buffer a database table is not a simple one and should be made by

an experienced ABAP developer in consultation with the system administrator.

Each application server contains its own SAP table buffer. If a system is composed

of several application servers, a special synchronization mechanism ensures that

database changes will invalidate the corresponding buffer contents.

However, this means that time lags in the synchronization process will, for a short

period, allow the buffer to be out-of-date or that invalid data could be read from

the buffer. You must take this into account when deciding about buffering.

Chapter 8 SQL Statements Including Update Strategies220
If an ABAP program requests data from a buffered table, the database interface

first tries to retrieve the data from the SAP table buffer. If it is successful, this

speeds up your access between 10 and 100 times in contrast to retrieving it from

the database.

There are also additions for the SELECT statement that always cause data to be read

directly from the database regardless of the buffer settings. You should be aware of

the possible performance problems that can result from using this type of access

on buffered tables. If you find it is necessary to use a statement that bypasses the

buffer, you should try to minimize the number of times the statement is used.

Often you are required to read data from multiple database tables. The use of a

table join usually provides the best performance. You must specify three things

when defining a table join:

� Join tables describe what database tables should be accessed.

� A join condition describes how the records of the two tables are connected.

� Join columns describe which columns from the join tables should be retrieved.

There are two options for implementing a table join:

� You create a database view in the ABAP Dictionary that corresponds to a table

join and select from it in your program.

� You can implement a join yourself using the SELECT statement in your program

(ABAP join); an example is shown in Listing 8.4. At runtime, the system dynam-

ically generates an appropriate database query in the database interface.

SELECT *
FROM sflight

LEFT JOIN scarr
ON sflight~carrid = scarr~carrid

INTO CORRESPONDING FIELDS OF TABLE gt_sflight
WHERE sflight~carrid IN s_carrid
AND sflight~connid IN s_connid
AND sflight~fldate IN s_fldate.

Listing 8.4 An ABAP Join into a Table

Tip

A database view is a view of the relevant database tables and does not contain

data redundantly.

In addition to the SELECT statement, Open SQL also contains INSERT, DELETE,

UPDATE, and MODIFY statements. You should use these other statements only with
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 8 221
an understanding of the SAP transaction concept as discussed later in this chapter;

otherwise, you may cause data inconsistencies.

One or more rows can be processed using an SQL command. Commands that pro-

cess several rows usually provide better performance than the corresponding sin-

gle set version. The exception is mass data change using MODIFY.

All Open SQL commands update the system return code. The return value (SY-

SUBRC) will be 0 (zero) if the command was successfully executed, and the system

field SY-DBCNT will return the number of rows for which the command was carried

out. Any return code other than zero indicates that the command was unsuccess-

ful; the exact meaning depends on the actual command.

Warning

Open SQL commands do not perform any authorization checks automatically. You

must execute these explicitly in your program.

If an Open SQL statement that executes a change to the database returns a return

code other than zero, you should make sure the database is returned to its original

consistent state before you attempt to make another database change. To achieve

this, perform a database rollback that reverses all changes in the current database

LUW.

There are two ways of causing a database rollback:

� Sending a termination dialog message (a message with type A [termination

type])

� Using the ABAP statement ROLLBACK WORK

The transmission of an A type message causes a database rollback and terminates

the program. All other message types (E [error type], W [warning type], and I [infor-

mation type]) also involve a dialog but do not trigger a database rollback.

The ABAP statement ROLLBACK WORK causes a database rollback but does not termi-

nate the program.

Logical Units of Work

An SAP logical unit of work (LUW) is a group of changes that belong together in the

SAP system from a logical point of view. These changes are either carried out

together or not made at all.

Chapter 8 SQL Statements Including Update Strategies222
In general, you will not normally find that a business transaction is processed by a

single SAP LUW. Often the entire process is split into individual, logical parts. Each

of these parts corresponds to an SAP LUW. The definition of SAP LUWs depends on

the entire process and its modeling.

A database LUW consists of changes that are executed until the database status is

“sealed,” also known as the data being committed to the database (shown in Figure

8.1). Within a database LUW, it is possible to discard all of the changes that have

taken place up to that point through the use of a database rollback. A database roll-

back resets the database to the status it had before the current database LUW. You

use this database rollback function to restore the previous consistent database sta-

tus if an error has occurred.

Figure 8.1 SAP LUW Within a Database LUW

When you use the ABAP statements ROLLBACK WORK and COMMIT WORK, you explicitly

implement a database rollback or database commit. There are also instances when

a database commit is triggered implicitly. Implicit database commits are always

initiated whenever the program must wait (as part of the release of the work pro-

cess), such as in the following cases:

� When the system sends an SAP screen to the presentation layer

� When the system sends a dialog message to the presentation layer

� Whenever there are synchronous and asynchronous Remote Function Calls

(RFCs)

� When you use the statements CALL TRANSACTION <tcode> or SUBMIT <program>

If you encounter an error during the processing of an SAP LUW, it should be possi-

ble to return to a consistent database status that existed before the beginning of

the SAP LUW. For this to be possible, the SAP LUW must be placed within a data-

base LUW.

Database
“sealed”

Database
“sealed”

Change 1

SAP LUW

Change 2 Change n…

Database LUW
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 8 223
Warning

With the previous implicit database commits, you cannot place changes that

belong to an SAP LUW in different dialog steps (a dialog step is the program pro-

cessing after a screen). This would place these steps in a separate database LUW,

violating the SAP LUW.

This is not a trivial matter. Usually, the SAP transaction has several screens or a

single screen with multiple subscreens in the form of a tab strip, and whenever

there is a screen change (a full screen or subscreen), an implicit database commit

is triggered. You must be able to bundle the entries from the user that form the

SAP LUW from different screens and make these changes within the database

LUW.

The three-tier architecture means that many users with low-cost personal com-

puters (with low performance) can be mapped to a small number of high-perfor-

mance and considerably more expensive work processes on application servers.

Each work process on an application server is assigned a work process on a high-

performance database server. Distributing user requests to work processes means

that individual clients at the presentation server level are assigned to a work pro-

cess for a specific period. After the work process has processed the user input in a

dialog step, the user (along with the program context) is removed from the work

process, thus freeing it for another user.

With the three-tier architecture, the number of database users is considerably

lower than the number of active users in the system. This has a positive effect on

the behavior of the database. Releasing the work process before each user dialog

ensures that the user actions, normally longer-lasting than the actual system pro-

cessing, do not block any work processes on the application server and, particu-

larly, on the database server. This produces a smaller load on database resources.

Only when the user has completed processing the screen, requiring the program

processing to continue, is the program context rolled back in.

Enqueue and Dequeue

If several users are competing for access to the same table or tables, you need to

find a way of synchronizing access to protect the consistency of the data. Locks are

a way of coordinating competing access to a resource. Each user requests a lock

before accessing critical data to prevent other users from modifying it before this

use is complete. It is important to obtain the lock as late as possible and release it

as quickly as possible to not create a bottleneck for other users unnecessarily.

Chapter 8 SQL Statements Including Update Strategies224
The Database Management System (DBMS) physically locks the table lines that are

read with the intent of being changed (SELECT SINGLE <f> FROM <dbtab> FOR

UPDATE). This is a database lock. Other users who want to access the locked record

or records must wait until after the physical lock is released. The lock remains until

the end of a database LUW, triggered by the database commit, when the DBMS

releases all locks that were set during the database LUW.

Within the SAP system, this means each database lock is released whenever a

screen is displayed because the screen change triggers an implicit database com-

mit. Database locks are not sufficient if data is collected throughout several

screens and are required to remain locked.

To keep a lock through a series of screens, the SAP system has a global lock table on

one application server that is used to set logical locks for table entries (see Figure

8.2). The lock table and the enqueue work process that manages the lock table are

on a uniquely defined application server of the SAP system. The server containing

this enqueue work process is known as the central instance. All the logical lock

requirements of the SAP system, regardless of which application server requested

the lock, run on this system-wide, unique work process.

Figure 8.2 Locking Data Through Database LUWs

Time

Data
selection

Lock duration

DB commit

Time

Screen 1 Screen 2

Read data

Screen n

DB commit Change data

Release lock

DB commit

DB LUW nDB LUW 1 DB LUW 2 DB LUW 3

Lock data
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 8 225
It is also possible to use logical locks to “lock” table entries that do not yet exist

within the database. This is useful when you create new table rows and is not pos-

sible with database locks.

You set a logical lock by calling the lock module. This special, table-related function

module is created automatically when you activate a table-related lock object.

When you call the lock module, logical locks are set for the entries in the respective

tables.

You maintain lock objects in the ABAP Dictionary. The customer namespace for

lock objects is either EY or EZ. When you create a lock object, you specify the table

whose entries will be locked later. This is known as the primary or basis table. How-

ever, you can specify other tables that have a foreign key relationship to the pri-

mary table, which are known as secondary tables.

The lock module created by the system automatically contains input parameters

for the lock parameters. The lock parameters are used to communicate with the

lock module which records are to be logically locked and consist of the key fields of

the primary table. When the lock object is successfully activated, the system gen-

erates one function module for creating or enqueuing a lock and one function

module for releasing or dequeuing a lock. The function modules are named

ENQUEUE_<lock_object_name> and DEQUEUE_<lock_object_name>. A logical lock is

set when you call the enqueue function module, but you can only create a lock if

no other lock entry conflicts with it. The lock module produces an exception if the

lock cannot be obtained.

Depending on the bundle technique used for database updates, an application

program may need to delete the lock entries it created (for an inline update) or

have them deleted automatically (during the update task). If a program that cre-

ated lock entries is terminated, the locks are automatically released (implicitly). A

program termination occurs with the production of a message of either type A or

X, with the execution of the statements LEAVE PROGRAM and LEAVE TO TRANSACTION,

or if the user enters /n in the command field.

At the end of the dialog program or when proceeding to another record, you call

the DEQUEUE function module to release the lock entries in the lock table. Unlike

the ENQUEUE function module, the DEQUEUE function modules do not trigger any

exceptions. If you want to release all locks, you can use the function module

DEQUEUE_ALL.

If you call a lock module with a lock parameter set to its initial value or not speci-

fied, the system will interpret this as a generic value and lock all table lines based

on the parameter values you did supply. The client parameter is an exception to

Chapter 8 SQL Statements Including Update Strategies226
this rule. If the client is not provided when the ENQUEUE function is called, the lock

only applies to the current execution client. If the client is specified, the lock only

applies to that client. If the client is specified as a space, the lock applies to all cli-

ents.

You can override the default lock mode of the lock module specified in the lock

object by using the parameter override MODE_<tablename>. The parameter X_

<lock_parameter> allows you to lock table records that contain an initial value in

the corresponding lock parameter.

The parameter _SCOPE defines the validity area of the lock. The values and their

meanings are shown in Table 8.1.

The _WAIT parameter defines whether a lock request should be repeated if the first

lock attempt fails.

You use the _COLLECT parameter to store the lock request in a local lock container

until the lock container is collected and passed on as a unit to the enqueue server.

Requesting any lock from a program is a communication step with lock adminis-

tration. If you set a lock for several objects, this communication occurs for each

lock. If you use the local lock container, you can reduce the technical effort for this

step. You set the parameter _COLLECT = 'X' whenever you call the lock module.

This collects the lock requests in the local lock container for processing together.

You send the contents of the lock container with the function module FLUSH_

ENQUEUE.

If you can successfully obtain all lock requests, the system deletes the entire con-

tents of the local lock container. If one of the locks in the container is not success-

ful and cannot be set, the function module triggers the exception FOREIGN_LOCK.

Value Meaning

1 The lock remains in the program that set it and is deleted again by the pro-

gram. This is for inline updates.

2 The lock is passed to the update program or called programs (this is the

default). This is for updates through an update program.

3 Two locks are set. One stays with the program and must be deleted within the

program. The other is passed to the update program. This is required when-

ever the update task is triggered for a partial update, but the record should

remain locked in the program for further updates.

Table 8.1 Scope Parameters
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 8 227
When this happens, none of the locks registered in the container are set, and the

contents of the container will remain intact for further dispatch attempts. If you

need to delete the contents of the local lock container, you call the function mod-

ule RESET_ENQUEUE.

Table 8.2 shows the effect of the MODE_<tablename> parameter.

The only difference between modes E and X is that E allows accumulation of locks

and X does not allow accumulation of locks. You implement the mode S if you

want to ensure that other users cannot change the data displayed in your program

while it is displayed. This is a case where you are not attempting to change the data

but do not want anyone else changing the data while you are using it.

Existing exclusive locks (E or X) always reject every lock attempt of another user,

regardless of the mode used by the other user. An existing shared lock (S) allows

other shared locks for protected display.

Warning

If you want to ensure that you are using up-to-date data in your program, with

the intention of changing the data and then saving it to the database, you must

perform the following steps in this order (the upcoming Figure 8.3 shows these

four points with the corresponding numbers):

� Set locks for the data to be processed.

� If the lock is successfully set, read the current data from the database table.

� Change the program data and update the changes to the database.

� Release the locks you set.

This order ensures that you read only data that has been changed consistently by

other programs and that your changes run completely under the protection of

locks. This assumes that all application programs use the SAP lock concept and

adhere to the given step sequence.

Lock Mode Meaning

E Extensible—lock for data change (accumulative exclusive lock)

X Exclusive—lock for data change (exclusive write lock)

S Shared—lock for protected data display (shared lock)

Table 8.2 Lock Modes

Chapter 8 SQL Statements Including Update Strategies228
If you do not adhere to the sequence, there is the danger that your program will

read data from the database that is currently locked by another program. In this

case, even if the lock is successfully set after the read action, the data read by your

program and displayed is already out of date.

Listing 8.5 shows a call to a lock object with a MODE_<tablename> parameter, a _

SCOPE parameter, and a _WAIT parameter specified. You should note the parameter

named x_name. This parameter, if supplied with an 'X', prevents the parameter

name from behaving in a generic manner and instead locks a blank value.

CALL FUNCTION 'ENQUEUE_ESRDIRE'
EXPORTING

mode_trdir = l_enq_mode
name = incl2
x_name = ' '
_scope = '2'
_wait = ' '

EXCEPTIONS
foreign_lock = 01
system_failure = 02.

IF sy-subrc NE 0 AND rs38l-extern = space.
MESSAGE ID sy-msgid

TYPE 'E'
NUMBER sy-msgno
WITH sy-msgv1 sy-msgv2 sy-msgv3 sy-msgv4.

ENDIF.

Listing 8.5 Call to a Lock Object

Inline Updates

If your transaction makes database updates from within your dialog program

(inline updates), you must bundle all of the database changes into a single dialog

step, normally the last. This is the only way to ensure that all your database

changes are processed as a single unit. To accomplish this within your dialog pro-

gram, the changes are stored within the global data of the program until the point

where the changes will be made to the database.

If you update the database directly from within your program, you must set and

release the SAP locks. Use the steps in the previous caution box and shown in

Figure 8.3 to ensure access to consistent data.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 8 229
Tip

Remember that in this case your program must delete the lock entries. To release

the lock entry, you execute either the unlock function module DEQUEUE_<lock_
object>, which belongs to the lock object, or the general unlock function module

DEQUEUE_ALL, which releases all lock entries.

Perform on Commit

You can bundle database updates from a dialog program for execution by using

the special subroutine technique PERFORM <subroutine> ON COMMIT. This registers

the specified subroutine for execution, but the subroutine will not be executed

until the system reaches the next COMMIT WORK statement. If you encapsulate the

database updates in the subroutines, they can be separated from the program

logic and processed at the end of the LUW.

A subroutine registered with PERFORM ON COMMIT can be registered multiple times

but only executes once per LUW in the order it was first registered. If you nest PER-

FORM ON COMMIT calls after release 4.6, a runtime error will be triggered. The COMMIT

WORK statement carries out all subroutines registered to be executed, in the regis-

tration order, one after the other, and then triggers a database commit after pro-

cessing all registered subroutines. If you encounter an error during the processing

of a registered subroutine, you can terminate processing from within the subrou-

tine with a type A message, and the previous consistent database status will be

restored.

The subroutines called with PERFORM ON COMMIT cannot have an interface. They

must work with global data and will use the values the data objects contain at the

point when the subroutine is executed.

Update Modules

Update techniques allow you to separate the user dialog program used to accept

user entries and the program that updates the data in the database. Figure 8.3

shows the steps that occur when a program uses an update request:

1. The dialog program receives the data changed by the user and writes it to a spe-

cial log table using an entry called a request. Later the update program writes

the data contained within the log tables to the database. The dialog program

Chapter 8 SQL Statements Including Update Strategies230
may write several entries to the log table. The entries in the log table represent

the LUW.

2. The dialog program closes the data packet (LUW) and informs the Basis system

that a packet exists for update by creating a header for the request records.

3. A Basis program reads the data associated with the LUW from the log table and

supplies it to the update program.

4. The update program accepts the transferred data and updates the database with

the entries in the request.

If the update is successful, a Basis program deletes all entries for this LUW from the

log table. If an error occurs, the entries remain in the log table, although they are

flagged as incorrect. The user who triggered the update is normally informed by

express mail about the error (the behavior is controlled by certain system param-

eters).

Figure 8.3 Process Flow of an Update

You implement the update program as a special function module known as an

update module. Update modules only have an interface for transferring data

through the IMPORTING and TABLES parameters. These must be typed using refer-

ence fields or structures.

Update program

Work process Work process

Log table

Request 1

Request 2

Data

Data

Dialog program

Database
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 8 231
You create update requests by calling the respective update function module in a

dialog program using the IN UPDATE TASK addition. This addition writes the func-

tion module and the input data as an exception request and does not execute the

function module immediately.

The same update key is used to store all of the update flags for an SAP LUW. When

the system executes a COMMIT WORK statement, it creates a header entry for the

request entries, and then the unit is closed. The log header contains information

about the dialog program that wrote the log entries and the update modules to be

executed. Once the log header is created, the system informs the dispatcher pro-

cess that an update package is available for processing.

You may need to discard all change requests that were written for the current SAP

LUW. To discard the current SAP LUW during the generation phase, which is before

the commit work occurs, as you do with an inline update, you use the ABAP state-

ment ROLLBACK WORK or produce a type A message.

Both methods delete all previous update flags, delete all previously set locks, dis-

card all updates executed in the current database LUW, and discard all form rou-

tines registered using PERFORM ON COMMIT.

If you need to trigger a database rollback within the update module, you issue a

type A message. The processing of the current SAP LUW will be terminated, and the

log entry belonging to the SAP LUW is flagged as containing an error. The termina-

tion message is also entered in the log.

Listing 8.6 shows a call to a module from an SAP NetWeaver 7.0 system. Note the

IN UPDATE TASK following the function module name.

CALL FUNCTION 'WFRULES_WRITE_DOCUMENT' IN UPDATE TASK
EXPORTING
objectid = objectid
tcode = tcode
utime = utime
udate = udate
username = username
planned_change_number = planned_change_number
upd_twfns = upd_twfns
upd_twfsa = upd_twfsa

TABLES
xtwfns = xtwfns
ytwfns = ytwfns
xtwfsa = xtwfsa
ytwfsa = ytwfsa.

Listing 8.6 Call to an Update Module

Chapter 8 SQL Statements Including Update Strategies232
Figure 8.4 shows the attributes of the called update module. Note the first three

options below the Update Module radio button. The first two, which cause an

immediate start of the update module, cause the update module to run as a V1 (a

primary or time-critical update), whereas the third causes the update module to

run as a V2 (a secondary, or non-time-critical, update).

Figure 8.4 Attributes of the Update Module

Listing 8.7 shows the beginning of the update module code. Note that when an

error condition is found, a type A message is used to abort the process, log the

cause of the error, and abort the update. You cannot use the explicit ABAP state-

ments COMMIT WORK or ROLLBACK WORK in an update module.

FUNCTION wfrules_write_document .

CALL FUNCTION 'CHANGEDOCUMENT_OPEN'
EXPORTING

objectclass = 'WFRULES '
objectid = objectid
planned_change_number = planned_change_number
planned_or_real_changes = planned_or_real_changes

EXCEPTIONS
sequence_invalid = 1
OTHERS = 2.

CASE sy-subrc.
WHEN 1. MESSAGE a600 WITH 'SEQUENCE INVALID'.
WHEN 2. MESSAGE a600 WITH 'OPEN ERROR'.

ENDCASE.

Listing 8.7 Code of an Update Module
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 8 233
If you set locks in the dialog program with the update technique with _scope = 2,

these are passed on to the update task at COMMIT WORK. After the commit, the locks

are no longer accessible by the dialog program. These locks are automatically

released by a Basis program at the end of the update process and do not need to be

released explicitly in the update module. The release of locks at the end of the

update task always takes place, regardless of the success of the task.

Asynchronous updates allow the dialog program and update program to run sep-

arately. The dialog program writes change requests to the log table and a COMMIT

WORK closes the LUW. The update task is started by the COMMIT WORK and processes

the change requests. This lets the dialog program continue without having to wait

for the update to complete. A special update work process runs the update pro-

gram.

Asynchronous updates are useful in transactions where the database updates can

take a long time and where the user’s dialog response time is important. You will

find that asynchronous updating is the standard technique used in dialog pro-

gramming.

A synchronous update is triggered by the statement COMMIT WORK AND WAIT. In this

case, the dialog program waits for the update to end before the program process-

ing continues. You would use a synchronous update mode if the result of the

update is necessary for further processing or for a dialog program termination.

You determine the processing success of a synchronous update by examining the

system field SY-SUBRC when using COMMIT WORK AND WAIT. While waiting for the syn-

chronous update to complete, the dialog program is in a rolled-out state. This

means the dialog work process is released for further use. When the update com-

pletes, the system assigns the dialog program to a free dialog work process to con-

tinue processing.

With local updates, everything runs in a single work process. The update functions

are run in the same dialog process used by the dialog program. Processing of the

dialog program continues after the update is complete. This is another form of

synchronous update. To have the update modules executed locally, you must use

the statement SET UPDATE TASK LOCAL before you write the requests. When the

requests are closed with the COMMIT WORK, these updates are processed in the same

dialog work process. After the local update is successfully processed, a database

commit is initiated explicitly, and the dialog program continues.

If an error occurs, and one of the update modules produces a termination mes-

sage, the system executes an automatic database rollback to discard the changes

Chapter 8 SQL Statements Including Update Strategies234
in the current LUW, and the dialog program is terminated with the display of the

termination message.

When you are in the local update mode, changes are not written to the database

table VBLOG, but instead are kept in memory. This makes this update quicker than

either synchronous or asynchronous updates; however, because this has an exclu-

sive use of a work process, it is only appropriate in batch mode. The SET UPDATE

TASK LOCAL is only possible if you have not created any requests for the current

LUW and is only in effect until the next COMMIT WORK.

There are two types of update modules: V1 and V2. An update module’s type deter-

mines its processing mode. All V1 requests in the dialog program are executed as

independent database LUWs. Only if they are executed successfully are the V2

requests processed. These are also executed as independent database LUWs. Let’s

explore both further.

� V2 update modules are used for database changes that are linked to the V1

change but that are not necessary to have completed with the main change, for

example, the updating of statistics.

� V1 modules can be either restartable or non-restartable. If there is an update

error, you can manually restart requests that were created by restartable update

modules using Transaction SM13. You can always restart V2 update modules if

there is an error.

Tip

Each time a data change is made to the database, the database physically locks

the record to the end of the current database LUW, either the database commit or

the database rollback. The same is true if you are reading with SELECT ... FOR
UPDATE. However, read accesses to a record are not allowed for the duration of

the physical lock, and many programs execute read access without locks. You

should attempt to keep these database locks as short as possible for performance

reasons.

You should adhere to the following rules when programming inline changes and

the update modules:

� Create new table entries first. Their database locks produce the least impact on

other users.

� You should perform table updates that are not critical to performance. Gener-

ally, these tables are accessed simultaneously by relatively few users.

� You should change central resources in the system late, if possible, within an

LUW so that the database locks impact others for as short a time as possible.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 8 235
During the update, the goal is to execute changes to central tables (those tables

that are performance-critical and often accessed simultaneously by several users)

as late as possible in the LUW. One method to accomplish this is to use the PER-
FORM ON COMMIT technique within the update.

If you encapsulate changes to central tables as form routines within the appropri-

ate function group of the update module and then call the routines from within

the update module using the PERFORM ON COMMIT, the form routines are then not

executed until the last update module is processed. Remember that you must use

global data within these form routines of the function group.

Open SQL

Although SAP HANA can be used as a standard database starting with SAP NetWea-

ver 7.40, ABAP was also extended to allow more direct access to the capabilities of

SAP HANA. Open SQL provides access to all database tables and views for which

structures are defined as repository objects in ABAP Dictionary. However, an SAP

HANA view (attribute view, analytic view, or calculation view) is an entity of the

SAP HANA database and is maintained there using SAP HANA Studio. These views

use SAP HANA-specific data types and different naming conventions than ABAP

Dictionary. This difference means that it is not possible to directly access an SAP

HANA view using Open SQL. SAP NetWeaver 7.40 provides the ability to access

these SAP HANA artifacts directly from ABAP programs through external views. An

external view is a special view in the ABAP Data Dictionary that functions as a

proxy for an SAP HANA view and that can be accessed using SAP HANA and Open

SQL.

SAP NetWeaver 7.40 SP02 introduced the ability to call a database procedure writ-

ten in SQLScript on an SAP HANA database. If the addition CONNECTION is specified,

then the statement can be executed in every system with a secondary database

connection to an SAP HANA database (sidecar scenario). If the addition CONNEC-

TION is not specified, then the statement can only be executed in the system on the

SAP HANA database.

The SQLScript procedure is specified using a database procedure proxy defined for

it. This proxy can either be specified directly as the proxy or dynamically as the

uppercase content of a parenthesized character-like data object, proxy_name.

Chapter 8 SQL Statements Including Update Strategies236
SQL Parser

SAP NetWeaver 7.40 SP02 also introduces a new SQL parser for Open SQL. This

parser performs stricter checks on some rules than the old parser. The parser is

now used for statically specified Open SQL and for the content of dynamic tokens.

Initially, this parser will only be used for the SELECT statement. One consequence

of this is that any following syntax constructs (this is only a sample, not a com-

plete list) that have always contained errors now produce syntax errors or runtime

errors.

The following list details the differences between the old and new parser:

1. With the old parser, the operator IN seltab of a WHERE condition was not always

checked statically to see whether the LOW and HIGH columns of the selection

table seltab could be converted to the data type of the database, and noncon-

vertible columns did not produce a runtime error in cases in which the selec-

tion table was empty. With the new parser, a static check is always made, and

nonconvertible columns always raise an exception.

2. With the old parser, it was possible to read the client column when using alter-

native table names or joins in ON and WHERE conditions without deactivating

automatic client handling using CLIENT SPECIFIED. In this case, the result set is

empty whenever the explicitly specified client is not the current client. With the

new parser, this situation produces a syntax check warning.

3. With the old parser, a single period (.) could be specified in the dynamic tokens

of any Open SQL statements. This period was ignored when the token was eval-

uated at runtime. With the new parser, a period like this will raise an exception

of the class CX_SY_DYNAMIC_OSQL_SYNTAX.

4. With the old parser, an alias name could be given more than once in cases in

which columns were specified dynamically in the SELECT list of the columns

after SELECT using column_syntax, even though this is not allowed statically.

With the new parser, this raises an exception of the class CX_SY_DYNAMIC_OSQL_

SEMANTICS.

5. As in all aggregate functions, the target field must be chosen appropriately

when the result is assigned. This was not checked with the old parser, and

assignments were made in accordance with the conversions rules. This did not

always raise an exception when values were lost. With the new parser, an aggre-

gate of count(*) or count(*) of the target field must be numeric, and a loss of

values always produces an exception.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 8 237
SQL Expressions

Beginning with SAP NetWeaver 7.40 SP05, SQL expressions in a list of specified col-

umns can be specified after SELECT. The result of an expression of this type (the

operands of which can be the names of columns or host variables) is determined

by the database system and passed to the application server in the appropriate col-

umn of the results set.

The restriction is that SQL expressions can only be used in Unicode programs, in

which the program attribute fixed point arithmetic is activated. If SQL expressions

are used, then comma-separated lists must be used, the escape character @ must be

specified in front of host variables, and stricter syntax checks are made on the

entire statement. Here, errors are reported as syntax errors that would otherwise

only produce syntax warnings.

Also, SELECT can be used to access Core Data Services (CDS) views, which have been

defined with the DDL of the ABAP CDS by using DEFINE VIEW starting with SAP Net-

Weaver 7.40 SP05.

Automatic client handling is performed for client-specific CDS views. If this han-

dling is deactivated with the addition of CLIENT SPECIFIED, then the client column

is part of the results set, even though the column is not an element of the CDS

view. New additions for CLIENT SPECIFIED after FROM make it possible to address

the column in the SELECT statement.

After a long period where Open SQL had no changes, it took some major steps in

ABAP release 7.40 to comprise as many features as possible from SQL92 and to

offer about the same functionality as the SELECT statement of the DDL of ABAP

CDS. This was accomplished by introducing a new SQL parser into the ABAP run-

time environment. One of the major indications for this is the new role of host

variables. Before release 7.40, you used ABAP variables in Open SQL statements as

it is done in all other ABAP statements. In fact, this prevented further development

quite effectively. Open SQL statements are executed on the database after being

transformed to native SQL. To push down more sophisticated things than simple

comparisons with ABAP variables in WHERE conditions–say SQL expressions in

many operand positions–the Open SQL parser must be able to distinguish clearly

between operands that are evaluated by the database and ABAP variables whose

contents must be passed to the database. You must prefix ABAP host variables in

Open SQL with @. Other fundamental changes that were introduced to Open SQL to

make it fit for the future were comma-separated lists and by placing the INTO addi-

tion of a SELECT statement behind the authentic SQL clauses.

Chapter 8 SQL Statements Including Update Strategies238
As a first benefit of these measures, fundamental new features in Open SQL were

rolled out with ABAP 7.40, comprising SQL expressions in various operand posi-

tions or the possibility of inline declarations. With ABAP release 7.50, this develop-

ment continued.

SQL Expressions Expanded

In almost all positions where you could place host variables, including the operand

positions of SQL expressions from 7.40 on or the work areas of writing SQL state-

ments, you can use host expressions. A host expression can be any ABAP expres-

sion, that is a constructor expression, a table expression, an arithmetic expression,

a string expression, a bit expression, a built-in-function, a functional method, or a

method chaining inside parentheses () prefixed with @. The host expressions of an

Open SQL statement are evaluated from left to right and their results are passed to

the database as it is done for the contents of host variables. You can see host

expressions as shortcuts for assignments of ABAP expressions to ABAP helper

variables and using those as host variables. Listing 8.8 shows a table expression

that reads a value from an internal table carrier on the right side of a WHERE condi-

tion.

SELECT carrid, connid, cityfrom, cityto
FROM spfli
WHERE carrid =
@(VALUE spfli-carrid(carriers[KEY name

carrname = name]-carrid
OPTIONAL))

INTO TABLE @DATA(result).

Listing 8.8 Host Variable Example

You can use SQL expressions (except in the SELECT list) as left sides of the compar-

isons with WHERE, HAVING, ON, and CASE and as operands of a CAST expression. Note

that this includes host variables and host expressions as operands of SQL expres-

sions.

SQL Functions Expanded

The following SQL functions can now be used in SQL expressions: ROUND, CONCAT,

LPAD, LENGTH, REPLACE, RIGHT, RTRIM, and SUBSTRING (Table 8.3). The COALESCE func-

tion can now have up to 255 arguments.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 8 239
SQL Function Result

ABS(arg) Absolute amount of arg.

CEIL(arg) Smallest integer number not less than the value of

arg.

DIV(arg1, arg2) Integer part of the division of arg1 by arg2. The sign

is assigned after the amounts are divided; positive if

the arguments have the same sign, and negative if the

arguments have different signs. Exception: arg2 has

the value 0.

DIVISION(arg1, arg2, dec) Division of arg1 by arg2. The result is rounded to dec

decimal places.

FLOOR(arg) Largest integer number not greater than the value of

arg.

MOD(arg1, arg2) Positive or negative integer remainder of the division

of arg1 by arg2.

ROUND(arg, pos) Rounded value of arg. If pos is greater than 0, the

value is rounded to the position pos on the right of

the decimal separator. If this is not the case, position

abs(pos)+1 to the left of the decimal separator is

rounded. This results in a 0 if the number of places is

not sufficient.

CONCAT(arg1, arg2) Chaining of character strings in arg1 and arg2. Trail-

ing blanks in arg1, arg2, and in the result are ignored.

The maximum length of the result is 1333.

CONCAT_WITH_SPACE(arg1,

arg2, spaces)
Concatenation of strings in arg1 and arg2 as with

CONCAT. The number of blanks specified in spaces is

inserted between arg1 and arg2. The maximum

length of the result is 1333.

INSTR(arg, sub) Position of the first occurrence of the string from sub

in arg (case-sensitive). arg respects leading blanks

and ignores trailing blanks. sub respects all blanks.

sub must contain at least one character. If no occur-

rences are found, the result is 0.

LEFT(arg, len) String of the length len with the len left characters

of arg (ignoring the trailing blanks). The value of len

cannot be greater than the length of arg.

LENGTH(arg) Number of characters in arg ignoring trailing blanks.

Table 8.3 SQL Functions

Chapter 8 SQL Statements Including Update Strategies240
LPAD(arg, len, src) String of the length len with the right-justified con-

tent of arg without trailing blanks and in which lead-

ing blanks produced by the expanded string are

replaced by the characters from the argument src

(respecting all blanks). Trailing blanks from arg are

preserved. If more characters are required than exist

in src, the content of src is used repeatedly. If len is

less than the length of arg, it is truncated on the right.

If src is empty and len is greater than the length of

arg, arg remains unchanged.

LTRIM(arg, char) String with the content of arg in which all trailing

blanks are removed and all leading characters that

match the character in char. A blank in char is signif-

icant.

REPLACE(arg1, arg2, arg3) Character string arg1, in which all instances of arg2

are replaced by the content from arg3. The replace-

ment of letters is case-sensitive. Trailing blanks are

ignored in all arguments. The maximum length of the

result is 1333.

RIGHT(arg, len) String of the length len with the len right characters

of arg (ignoring the trailing blanks). The value of len

cannot be greater than the length of arg.

RPAD(arg, len, src) String of the length len with the left-justified content

of arg without trailing blanks and in which trailing

blanks produced by the expanded string are replaced

by the characters from the argument src (respecting

all blanks). Trailing blanks from arg are preserved. If

more characters are required than exist in src, the

content of src is used repeatedly. If len is less than

the length of arg, it is truncated on the right. If src is

empty and len is greater than the length of arg, arg

remains unchanged.

RTRIM(arg, char) String with the content of arg in which all trailing

blanks are removed and all trailing characters that

match the character in char. A blank in char is signif-

icant.

SQL Function Result

Table 8.3 SQL Functions (Cont.)
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Practice Questions Chapter 8 241
Access to CDS Entities

Beginning with release 7.50, it is now possible for a CDS entity to be used together

with database tables and classic views in a SELECT statement if addressed using its

CDS database view. Starting with release 7.50, CDS views can be addressed using

the name of their CDS entity, even if they are associated with database tables or

classic views using joins or subqueries. This makes accesses performed on a CDS

using the CDS database view, introduced in 7.40, obsolete.

The new CDS table functions can also be specified as data sources of a SELECT state-

ment.

If an input parameter of a CDS entity is annotated with the new annotation @Envi-

ronment.systemField, Open SQL can pass the system value that matches the value

of the annotation implicitly. The annotation value #CLIENT even prevents an

actual parameter from being passed to input parameters explicitly that are anno-

tated in this way for client IDs.

Practice Questions

The following practice questions will help you evaluate your understanding of the

topic. The questions shown are similar in nature to those found on the certifica-

tion examination. Although none of these questions will be found on the actual

exam, they allow you to review your knowledge of the subject. Select the correct

answers and then check the completeness of your answers in the following solu-

tion section. Remember that you must select all correct answers and only correct

answers on the exam to receive credit for the question.

SUBSTRING(arg, pos, len) Substring of arg from the position pos in the length

len. pos and len must be specified so that the sub-

string is within in arg.

COALESCE(arg1, arg2, ...,

argn)
The COALESCE function can have a comma-separated

list with at least two but no more than 255 arguments,

arg1, arg1, ..., argn. This function returns the values

of the first argument, which does not have the null

value. If every argument has the null value, the value

of the last argument argn is returned.

SQL Function Result

Table 8.3 SQL Functions (Cont.)

Chapter 8 SQL Statements Including Update Strategies242
1. Update tasks are the only way to make changes to the database.

� A. True

� B. False

2. Which statement is true?

� A. A database LUW must be placed within an SAP LUW.

� B. An SAP LUW must be placed within a database LUW.

3. Which actions release a database lock? Select all that apply.

� A. COMMIT WORK

� B. ROLLBACK WORK

� C. The display of an SAP screen

� D. The display of a dialog message type E

� E. The display of a dialog message type A

� F. ENQUEUE_<lock_object>

� G. DEQUEUE_<lock_object>

� H. A call to a function module

� I. A CALL TRANSACTION

� J. A SUBMIT

� K. An /n in the command field

4. Which actions release a lock object (with a default value for _SCOPE)? Select all

that apply.

� A. COMMIT WORK

� B. ROLLBACK WORK

� C. The display of an SAP screen

� D. The display of a dialog message type E

� E. The display of a dialog message type A

� F. ENQUEUE_<lock_object>

� G. DEQUEUE_<lock_object>

� H. A call to a function module

� I. A CALL TRANSACTION
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Practice Questions Chapter 8 243
� J. A SUBMIT

� K. An /n in the command field

5. How can you implement a table join other than by using the JOIN statement?

Fill in the blank.

6. The data buffered on each application server…

� A. Is always the same.

� B. Is never the same.

� C. Depends on the users.

7. The target structure of a SELECT statement requires the field names to match

the columns selected and to be in the same left-justified order.

� A. True

� B. False

8. When is an ENDSELECT not required for a SELECT? Select all that apply.

� A. When the FROM is a view

� B. When you specify a join of tables

� C. When you do a SELECT SINGLE

� D. When you specify into a table

� E. When you specify appending a table

9. The database always uses the primary key when the WHERE clause contains any

of the key fields.

� A. True

� B. False

10. Open SQL does not allow you to specify a secondary index during a SELECT.

� A. True

� B. False

Chapter 8 SQL Statements Including Update Strategies244
11. You should always buffer database tables that contain fewer than 100 records.

� A. True

� B. False

12. Buffering data can speed access to data up to 100 times when compared to

reading it from the database.

� A. True

� B. False

13. All Open SQL commands allow processing on multiple rows.

� A. True

� B. False

14. The _WAIT parameter of a lock object waits for the lock to be successful.

� A. True

� B. False

15. It is recommended that you place the COMMIT WORK in the update task.

� A. True

� B. False

16. It is possible to PERFORM <subroutine> ON COMMIT in an update task.

� A. True

� B. False

17. What is the correct order for using a lock object?

� A. Read the data, set the lock, change the data, release the lock

� B. Set the lock, read the data, change the data, release the lock

� C. Set the lock, read the data, release the lock, change the data
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Practice Questions Chapter 8 245
18. Local update tasks are quicker because they stay within the same work pro-

cess.

� A. True

� B. False

19. V1 update tasks are always non-restartable, whereas V2 update tasks are

always restartable.

� A. True

� B. False

20. Lock objects are only required when doing dialog programming; SAP’s best

practice does not require them when doing background or en masse changes,

as there is no COMMIT WORK that will occur.

� A. True

� B. False

21. Database access can occupy most of the runtime in an ABAP program. Which

tools are available to assist you to diagnose performance issues in your pro-

gram? Select all that apply.

� A. ABAP Objects Runtime Analysis (Transaction SE30)

� B. ABAP Objects Runtime Analysis (Transaction ATRA)

� C. Performance Trace (Transaction ST05)

� D. ABAP Trace (Transaction SAT)

22. Which statement cannot use a subquery.

� A. SELECT

� B. UPDATE

� C. DELETE

� D. INSERT

� E. None of the above

Chapter 8 SQL Statements Including Update Strategies246
23. An SAP LUW differs from a database LUW in that it allows for multiple screens

to be processed.

� A. True

� B. False

24. Beginning with SAP NetWeaver 7.40, if SAP HANA (an in-memory database) is

being used as a database, then table buffering is no longer effective and is

therefore not possible.

� A. True

� B. False

Practice Question Answers and Explanations

1. Correct answer: B

In addition to the various types of update tasks, it is also possible to use inline

updates to make changes to the database.

2. Correct answer: B

If you encounter an error during the processing of an SAP LUW, it should be

possible to return to the consistent database status that existed prior to begin-

ning the SAP LUW. This is only possible if the SAP LUW is placed within a data-

base LUW.

3. Correct answers: A, B, C, D, E, I, J, K

A database lock is released when the database performs a rollback or database

commit. When you execute the ABAP statements ROLLBACK WORK and COMMIT

WORK, you explicitly implement a database rollback or database commit. There

are also instances when a database commit is triggered implicitly. Implicit data-

base commits are always initiated whenever the program has to wait, such as

when the system sends an SAP screen, when the system sends a dialog message,

whenever there are synchronous and asynchronous RFC calls (the question ref-

erenced a normal function call, not an RFC), or when you use the statements

CALL TRANSACTION <tcode> or SUBMIT <program>.

4. Correct answers: A, B, E, G, K

If a lock is enqueued with a _scope of 2 (the default), the lock is released after

you execute the ABAP statements ROLLBACK WORK and COMMIT WORK or after a

program termination. A program termination is produced after a message with
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Practice Question Answers and Explanations Chapter 8 247
the type of either A or X, with the execution of the statements LEAVE PROGRAM

and LEAVE TO TRANSACTION, or if the user enters /n in the command field. The

lock can also be released by calling the DEQUEUE function module or the func-

tion module DEQUEUE_ALL.

5. Correct answer: A database view

There are two ways to implement a table join. One is to create a database view

in the ABAP Dictionary that corresponds to the table join and use this view. The

other is to define the join directly in your program as an ABAP join.

6. Correct answer: C

SAP table buffers exist separately for each application server, and there is a lim-

ited amount of buffer space on each. As users access data, the data that is con-

tained within the table buffers changes as more recent data replaces older data.

This means that it is normally a very rare occurrence that the contents of the

buffers across application servers match.

7. Correct answer: B

It is not necessary for the field names to match the columns selected. What is

necessary is for the size and type of the fields to match.

8. Correct answers: C, D, E

An ENDSELECT is not required because these SELECT statements do not loop. A

SELECT SINGLE statement only returns one record, and both the INTO TABLE and

APPENDING TABLE fill the destination in a block mode. Because none of these

statements is a SELECT loop, the ENDSELECT is not necessary.

9. Correct answer: B

The database optimizer determines which index to use. Under most circum-

stances, it is based on the fields provided in the WHERE clause and which indexes

exist for the database table.

10. Correct answer: A

This is correct. Open SQL does not allow you to provide any direction directly

to the underlying database. Open SQL relies on the database’s optimizer to

determine which index to use.

11. Correct answer: B

The decision to buffer database tables is more complex than a simple determi-

nation based on the expected size of the table. Again, the ideal table is small,

read frequently, rarely changed, and normally accessed directly with its key

fields. However, the decision to buffer a database table should be made by expe-

rienced ABAP developers in consultation with the system administrator.

Chapter 8 SQL Statements Including Update Strategies248
12. Correct answer: A

A table that is buffered can speed up your access between 10 and 100 times

compared to reading it from the database. The caveat for the speed, however, is

that for the buffer to be used, it must be a SELECT statement that specifies the

full buffered key with equalities only.

13. Correct answer: A

All Open SQL commands allow processing on multiple rows.

14. Correct answer: B

The _WAIT parameter defines whether a lock request should be repeated if the

first lock attempt fails. It does not wait for the lock to become available.

15. Correct answer: B

You must not use the explicit ABAP statements COMMIT WORK or ROLLBACK WORK

in the update module.

16. Correct answer: A

The goal in the update task is to execute changes to central tables as late as pos-

sible in the LUW. To achieve this, you can use the PERFORM ON COMMIT technique

in the update. If you encapsulate changes to central tables as form routines

within the appropriate function group of the update module and then call the

routines from within the update module using the PERFORM ON COMMIT, the form

routines will not be executed until the last update module is processed.

17. Correct answer: B

This order should be natural. Obtain the lock so that you know the data is not

being modified elsewhere and is therefore consistent, read the data to begin

with the current consistent state, make your change, and finally release the lock

to make the data available for others who may be waiting for the data.

18. Correct answer: B

Local updates are quicker because they do not provide updates to the log table.

Because there is less database activity, the process runs quicker. However, if

there is a problem, there is no way of knowing what data was lost because there

are no requests in the log table.

19. Correct answer: B

V1 modules can either be restartable or non-restartable. V2 tasks are always

restartable.

20. Correct answer: B

This statement is false on multiple levels. Lock objects are never required, but

are considered a best practice. Often we hear that this program will only ever be
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Takeaway Chapter 8 249
run by one person. And while that may be true, it does not prevent multiple

people (or schedulers) from running it multiple times. People make mistakes,

so you should always program to take into account these mistakes when possi-

ble. SAP’s best practice is to use a lock object to ensure database integrity

regardless of how or who makes the change to the table.

21. Correct answers: All options

Yes, they are all correct. The first two are from the same program (readers who

have worked with much older releases will be familiar with Transaction SE30,

while those who started on later releases will be familiar with Transaction

ATRA). This program will show time duration of individual routines and iden-

tify the amount of time spent in the database. Transaction ST05 can trace actual

SQL statements, lock objects (enqueue), RFCs, and buffers. Transaction SAT is a

new transaction (starting with release 7.02) that can identify performance

issues in development environments. If you want to use this tool in an earlier

release, you can find additional information online by doing a web search for

the term “Z_SE30_COMPARE Siegfried Boes”.

22. Correct answer: E

Prior to release 7.50, the answer would have been D, INSERT, but after release

7.50, all these statements can use a subquery.

23. Correct answer: B

An SAP LUW is always a subset of a database LUW. Because a database LUW can-

not span the processing of multiple screens, neither can an SAP LUW.

24. Correct answer: B

Not only does SAP NetWeaver 7.40 still allow table buffering, it has been made

more efficient and usable under additional conditions.

Takeaway

You should now be able access fields from a database table or tables efficiently.

You should also be able to describe the difference between an SAP LUW and a data-

base LUW. You should understand why update tasks need to be bundled. You must

understand the different types of Open SQL SELECT statements and what improves

or impairs access performance.

Chapter 8 SQL Statements Including Update Strategies250
Refresher

You need a thorough understanding of the different types of update, commit, and

rollback strategies. You must understand efficient data access. You must also

understand when to choose a particular type of update strategy and why it is the

best solution. You must understand the concept of logical units of work and how

SAP LUWs and database LUWs work together. Table 8.4 shows the key concepts for

the SQL statements and update strategies.

Tips

As a percentage of the certification test, this subject is one of the top three with the

most questions. An understanding of how to optimize data access and how to

update tasks for dialog programming is required for the portion of the test cov-

ered in this chapter.

The more practical experience you have with this subject, the simpler you will find

the questions in this portion of the certification examination. However, inefficient

programming techniques inevitably lead to incorrect answers in this portion of

the test. You must understand why one technique should be used in place of

another.

You should have mastered the various types of Open SQL statements and their dif-

ferent variations. You should understand update tasks, record locks, and logical

units of work and how they interact with the user, application server, and data-

base. You should understand how to keep data in a constant state within the data-

base. Your knowledge of these topics will allow you to successfully complete this

portion of the certification exam.

Key Concept Definition

SELECT Defines how to retrieve data from a single database table or

multiple database tables efficiently

Bundling updates Defines what types of asynchronous and synchronous update

tasks may be performed

Commit and rollback Defines how the commit and rollback provides a consistent

database

Locks Defines how locks should be used to synchronize users’ access

to data

Table 8.4 Key Concepts Refresher
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Chapter 9

Basic ABAP Programs and
Interface Creation

Techniques You’ll Master:

� Organize development objects

� Identify different types of programs

� Determine program event blocks

� Use Dynpros, selection screens, and modal dialog boxes

� Use authorization checks

� Explain the different types of modularization units

� Identify the effect of messages on program execution

Chapter 9 Basic ABAP Programs and Interface Creation252
This chapter provides you with a basic understanding of how development objects

are organized. We will discuss how these objects are grouped into change requests

(commonly called transports) and moved throughout the system landscape. We

will cover the different types of programs, identifying their similarities and differ-

ences. We will discuss the majority of the event blocks and the basics of Dynpros

(often just referred to as screens), selection screens, and modal dialog boxes (see

Chapter 12 and Chapter 13 as well). We will cover the use of authorization checks

and the different types of modularization units, again identifying both their simi-

larities and differences. Last, we will cover the use of the MESSAGE statement on

program execution.

Each of these topics is covered separately, and they are followed by practice ques-

tions and solutions.

Real-World Scenario

You have been asked to lead a new project implementing a new group of

application programs for use in your company’s SAP system. It is your

responsibility to put together a development team and produce the subsys-

tem.

In examining the requirements of the subsystem, you see that there are a

number of dialog transactions and several report transactions. Some of the

data is sensitive, so both the dialog transactions and report transactions will

require separate authorization checks to determine if the user is allowed to

view the data. The dialog programs will also need to check for authorization

to create or change the data. If the user is not authorized to perform the oper-

ation, a message must be displayed.

Once you have your development team in place, you will be required to orga-

nize the development so that it all reaches production at the same time for

go-live. Owing to the complexity of accessing the data and the numerous

types of authorization checks, a decision was made to encapsulate the tables’

access to global reuse components. This will also provide the option of buff-

ering retrieved data during dialog transactions.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 9 253
Objectives of this Portion of the Test

The purpose of this portion of the certification examination is to verify that you

have detailed knowledge of the ABAP development environment and the capabil-

ities of different types of programs. This portion of the examination will test your

knowledge of a wide range of topics. The points you will need to understand from

this section include:

� What types of programs exist

� Event blocks

� Dynpros, selection screens, and modal dialog boxes

� Different methods of executing programs

� Authorization checks

� Modularization units

� The effect of messages in a program

Because this is an ABAP certification examination, assessing your general knowl-

edge of ABAP and its environment is the most important objective of the test. The

certification examination will give more weight to the material in this chapter

than all of the other topics in the examination. This means there will be a higher

percentage of questions related to this chapter than any other chapter.

Key Concepts Refresher

Unsurprisingly, you typically need to develop ABAP programs as an ABAP devel-

oper. You therefore need to understand and be able to perform the following types

of tasks when developing ABAP programs:

� Create various types of programs

� Test various types of development

� Move development objects from your development environment to your test

and production systems

� Encapsulate data and processing

� Interact with users

� Verify that the user is authorized to perform a specific function

� Inform users about errors and program status

Chapter 9 Basic ABAP Programs and Interface Creation254
Organizing Development

Development projects start out in a development system. The development

objects edited or created in a project must then be transported to subsequent sys-

tems when the project is complete.

At the start of a development project, normally, the project manager creates a

change request in which he identifies who will be working on the project, in either

the Transport Organizer or directly in the ABAP Workbench. Then he creates a task

for each project employee or developer within the change request. In some cases,

where the development is limited, there may be only a single task in a single

change request.

As a development object (for example, a program or data element) is edited or cre-

ated, you assign this object to the change request. The object is thus entered into

your task. All repository objects that you work on during a development project

are collected within your task. When you complete your development tasks, you

perform syntax checking, activation, and testing before you release the task in the

change request. Once the project development is complete and all tasks are

released, the change request itself is released, but it cannot be released until all of

its tasks are released (see Figure 9.1).

Figure 9.1 Project Timeline of a Change Request

Project team:

Project manager:

USER_GOLD

USER_GREEN

USER_BROWN

USER_GRAY

USER_BLACK

USER_RED

USER_WHITE

End of
development

Locking objects against outside access

Task is released All tasks released

Request is released
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 9 255
Organizing a development project using a change request offers the following

advantages:

� Each developer can track and check his project-specific activities.

� The development objects can be processed by all developers involved in the

project. For developers who do not belong to the project team, the repository

objects remain locked until the project is completed and the change request is

released.

� The joint transport of the development objects processed in the project at the

time of project completion is automatically ensured by assigning the objects to

the change request. The transport route of the involved packages specifies to

which subsequent system they are transported.

Unlike packages that distinguish between repository objects in a logical and func-

tional way, change requests are project-related and therefore delimit the objects

over a period of time. Therefore, although a program always belongs to only one

package, it can, at different times, belong to different projects or change requests.

It is possible for a single change request to contain multiple development pack-

ages (actually, it is very likely unless the change request contains all new develop-

ment for a specific purpose).

ABAP Programming Overview

ABAP is a programming language developed by SAP for programming business

applications within the SAP environment. As discussed in Chapter 3 and Chapter 8,

the three-tier architecture used by SAP provides user interaction through the pre-

sentation layer, which controls the business logic running on an application

server, which retrieves and stores data in the database server. ABAP is the language

that controls the business logic running on the application server. ABAP programs

are executed in the ABAP runtime environment. The main role of the ABAP pro-

gram in the application layer is the processing and formatting of data from the

database layer and its interaction with the user input from the presentation layer.

ABAP provides integrated database access to multiple database systems through

the use of Open SQL. It optimizes database access through the use of SAP buffering

and provides internal tables for processing tabular data within the program. It

uses the concept of online transaction processing (OLTP) integrated into the ABAP

runtime environment, enabling multiple users to access the database at the same

Chapter 9 Basic ABAP Programs and Interface Creation256
time using the SAP LUW. It provides outside access to other programming envi-

ronments with the Remote Function Call (RFC). Also, ABAP has an integrated inter-

face to XML.

ABAP supports both procedural and object-oriented programming models based

on subroutines, function modules, and methods of classes. As appropriate for a

language designed around international business, the textual language is handled

independently of the programming language. ABAP provides for the separation of

language-specific program components from the source code, and they are loaded

during program execution based on the user’s logon language. ABAP supports

code pages, single-byte, double-byte, and, after release 6.10, even Unicode.

Each ABAP program starts with an introductory statement. The functions of an

ABAP program are implemented in processing blocks, which are defined using

modularization statements. The order of the processing blocks is irrelevant for

program execution. Following the introductory statement, every program con-

tains a global declaration section where you implement definitions of data objects

(for example, variables, structures, and internal tables) and data declarations that

are visible in the entire program. Whereas the order of individual definitions and

declarations does not matter generally, you must take into account that an ABAP

statement can only refer to existing definitions and declarations. Therefore, they

must be defined before they can be declared and declared before they can be used.

For example, a definition of a local type must occur prior to its first use in the pro-

gram, normally either as a data declaration or as part of an interface to a modular-

ization unit.

Because ABAP is a language that has evolved over time, it contains several obsolete

statements or forms of statements that were replaced with improved language

constructs to ensure downward code compatibility but were not eliminated. ABAP

Objects prevents the use of almost all of these obsolete additions. In general, you

should no longer use these additions in new programs, but you may encounter

them in older programs.

The introductory statement must be the first statement in the program after the

include programs are expanded during program generation. It can only appear

once in the program.

Introductory program statements include the following:

� Executable programs (REPORT)

� Module pools (PROGRAM)

� Function groups (FUNCTION-POOL)
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 9 257
� Class pools (CLASS-POOL)

� Interface pools (INTERFACE-POOL)

� Subroutine pools (PROGRAM), which are now considered obsolete

� Type groups (TYPE-POOL)

All of these are stand-alone compilation units or program types. Include programs

are only used in the context of superior programs. Type groups, also known as

type pools (program type T), are stand-alone programs from a logical point of view.

However, they do not contain executable code but only contain type definitions

and constant definitions. Therefore, type groups have their own introductory pro-

gram statement, the TYPE-POOL.

When you create a program, the ABAP Workbench automatically generates the

introductory statement from the program type. If changes are necessary, only the

introductory statement’s additions should be edited. Examples of a new report

and some possible additions are shown in Listing 9.1 and Listing 9.2.

*&--
*& Report Z_NEW_REPORT
*&
*&--
*&
*&
*&--

REPORT z_new_report.

Listing 9.1 A New Introductory Statement for a Report

*&--
*& Report Z_NEW_REPORT
*&
*&--
*&
*&
*&--
REPORT z_new_report

LINE-SIZE 250
NO STANDARD PAGE HEADING
MESSAGE-ID z_message_class.

Listing 9.2 A Modified Report Introductory Statement

In particular, the keywords FUNCTION-POOL, CLASS-POOL, INTERFACE-POOL, and

TYPE-POOL should only be generated by the corresponding tools of the ABAP

Workbench. The creation of a function group also automatically generates the

Chapter 9 Basic ABAP Programs and Interface Creation258
main program, including the top include containing the FUNCTION-POOL state-

ment. The complete name of the program for a function group in the Repository

consists of the prefix SAPL and the name of the function pool (function group). All

statements following the introductory program statement or those that are

included as include programs are treated as a single unit by the ABAP compiler.

Each ABAP program is divided into processing blocks. Each accessible statement of

an ABAP program that does not belong in the global declaration section belongs to

a processing block.

The possible processing blocks are:

� Procedures

– Methods

– Function modules

– Subroutines

� Dialog modules (exclusively for Dynpros)

� Event blocks

Function modules are always defined globally, whereas methods can be defined

either globally or locally within the program, and subroutines should only ever be

defined locally (subroutine pools now being considered obsolete). The flow logic of

Dynpros calls dialog modules to perform their processing. Event blocks are trig-

gered by events in the ABAP runtime environment.

The parameter interface of a procedure consists of formal parameters and speci-

fies the possible exceptions of the procedure. The formal parameters are input,

output, and input/output parameters and return values. There are also the obso-

lete table parameters. Subroutines do not provide input or output parameters

directly because both USING and CHANGING are treated as a type of changing param-

eter; they do not provide for returning values. Function modules do not provide

returning values. Formal parameters are either generic or completely typed. You

can specify either pass by reference or pass by value for most formal parameters,

although pass by value is mandatory for some formal parameters.

The differences and similarities are discussed in detail later in the sections ABAP

Subroutine, ABAP Function Module, and ABAP Classes and Methods.

Class-based exceptions can be declared using RAISING for all procedures (methods,

function modules, and subroutines) and can then be propagated from the proce-

dure. Also, EXCEPTIONS can be used in methods and function modules to define
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 9 259
non-class-based exceptions, which can then be triggered in the procedure using

either RAISE or MESSAGE ... RAISING.

Listing 9.3 shows the older exceptions that were MESSAGE-based and could only

exist in function modules or methods. Listing 9.4 shows an example of a class-

based exception. A single procedure can use only one type—not both.

MESSAGE e008(38) WITH 'FOOBAR'
RAISING table_cannot_be_loaded.

Listing 9.3 Example of a MESSAGE-Based Exception

RAISE EXCEPTION TYPE cx_sy_dynamic_osql_semantics
EXPORTING textid =
cx_sy_dynamic_osql_semantics=>unknown_table_name

token = 'FOOBAR'.

Listing 9.4 Example of a Class-Based Exception

When you decide whether to use pass by reference or pass by value for a formal

parameter, you must compare the relative performance and robustness for each

type of transfer:

� A pass by reference parameter provides a pointer to the original data object in

memory, and the procedure operates directly on the original object.

� A pass by value parameter copies the value to a new data object or, in the case of

a changing parameter, copies it once when called and once again upon comple-

tion.

In ABAP, pass by reference is always quicker because no local object is created and

no data transport is necessary when calling the procedure. Simply for perfor-

mance reasons, pass by reference is usually preferred unless there is an explicit or

implicit write to an input parameter within the procedure or unless you want to

ensure that an input/output (changing) or output parameter is only returned if

the procedure ends without error. In such cases, pass by value is mandatory so that

the assigned parameter is not simultaneously modified in the calling code when

there is a write access to a formal parameter.

The following shows a very simple example of the behavioral difference of call by

reference versus call by value. Notice that the code (shown in Listing 9.5) provides

four variables to the formal parameters of the subroutine. Two are passed by

value, and two are passed by reference; one of each pair is passed as a USING

parameter, and one of each pair is passed as a CHANGING parameter. At the point in

the program when the call is made (PERFORM pass_by_example), the values of the

Chapter 9 Basic ABAP Programs and Interface Creation260
variables in the calling routine are all zero (see Figure 9.2). At the point of the

BREAK-POINT statement (see Figure 9.3), all of the formal parameters have a value

of one. However, if the debugger point of view is changed to the calling routine,

the original variables passed by reference have changed, whereas the variables

passed by value have not (see Figure 9.4).

FORM pass_by.
DATA:

lv_num1 TYPE I,
lv_num2 TYPE I,
lv_num3 TYPE I,
lv_num4 TYPE I.

PERFORM pass_by_example
USING lv_num1 lv_num2
CHANGING lv_num3 lv_num4.

ENDFORM. "pass_by

FORM pass_by_example USING value(p_by_value1) TYPE I
p_by_ref1 TYPE I

CHANGING value(p_by_value2) TYPE I
p_by_ref2 TYPE I.

ADD 1 TO: p_by_value1, p_by_ref1, p_by_value2, p_by_ref2.
BREAK-POINT.

ENDFORM. "pass_by_example

Listing 9.5 Example Code

Figure 9.2 Prior to Executing the PERFORM pass_by_example

Figure 9.3 At the BREAK-POINT Statement
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 9 261
Figure 9.4 After the BREAK-POINT Statement Back in the Calling Routine

You should note the following behavior when using pass by reference:

� In subroutines, write access can occur to an input parameter defined with USING

without the occurrence of syntax errors. This is not the case with methods or

function modules defined with IMPORTING.

� An output parameter that is passed by reference acts like an input/output

(changing) parameter. If there is a read access to an output parameter in the

procedure before the value of the parameter is changed, this value is not initial,

unlike with pass by value, but is the same as the current value of the actual

parameter from the calling code. This also means that if the called procedure

does not change an output parameter, the actual parameter in the calling code

remains unchanged.

� If a procedure is stopped because of an error (in other words, stopped for a rea-

son other than that it has reached its last statement or a RETURN), all parameters

retain the values they contained when the procedure was stopped.

To summarize, pass by reference is always preferable when performance is an

issue, whereas pass by value is more suitable for situations where robustness and

data consistency are important.

Only pass by reference can be specified for the obsolete table parameters in either

subroutines or function modules. As we mentioned, pass by value is mandatory

for the return value of functional methods, the output parameters of events in

ABAP Objects, and all formal parameters of function modules that are either RFC-

enabled or are update modules.

ABAP Event Blocks

Event blocks are units of code that are executed in a sequence determined by

external events: often the runtime environment for ABAP, and occasionally by a

user’s actions. The sequence in which the processing blocks occur in the program

Chapter 9 Basic ABAP Programs and Interface Creation262
is irrelevant. However, to make your programs easier to understand, you should

include the event blocks in your program in approximately the same order as that

in which the system will call them and prior to subroutines or local class imple-

mentations.

Event blocks are started using an event keyword and ended by the next processing

block: either another event block or other type of procedural block. Within an

event block, you cannot declare local data types or data objects. All declarative

statements in event blocks belong to the ABAP program and are visible globally (in

all subsequent processing blocks). There are two exceptions: The event blocks AT

SELECTION-SCREEN and GET are implemented internally as procedures and can

contain local data.

Event blocks can be grouped by type. Table 9.1 shows the event types that exist.

With the exception of AT SELECTION-SCREEN and GET, event blocks can be listed

multiple times in a program, but normally you will not see this. (The valid case

where this would be used is extremely convoluted, involving sharing code

between multiple programs or include programs or when the code is inadver-

tently included multiple times.) The event block START-OF-SELECTION can also be

implicitly listed multiple times. Whenever an event occurs, all associated event

blocks are executed in the order of their occurrence. Again, the event blocks are

triggered by events in the ABAP runtime environment.

The following list details the event blocks and when or how they are triggered.

� LOAD-OF-PROGRAM

This event keyword is triggered when the program is initially loaded into mem-

ory. This program constructor event is triggered for all program types. This can

be useful to initialize or instantiate a data object when the program begins only

once or to indicate to an external process that the program has started. The

event is only triggered once, before any other event of a program.

Type of Event Event Occurs in Program Types

Program constructor event All program types

Reporting event Only in executable programs

Selection screen event Only during selection screen processing

List event Only during list processing

Table 9.1 Types of Events
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 9 263
� INITIALIZATION

This reporting event keyword is triggered by the actual start of the program and

before the selection screen processing of any existing standard selection screen

(the only event that can occur before this is LOAD-OF-PROGRAM).

When an executable program defines that a standard selection screen is called

again by the ABAP runtime environment after an execution, the INITIALIZA-

TION event is triggered again. An example of this is a report in which after dis-

playing the report, the user clicks on the Back button or presses (F3) and returns

to the selection screen to rerun the report. In this case, initializing parameters

or selection criteria of the selection screen have no effect because they are auto-

matically supplied with the preceding user inputs from the selection screen

during the selection screen event AT SELECTION-SCREEN OUTPUT.

� START-OF-SELECTION

In an executable program, all statements that are not declarations and are listed

before the first explicit processing block—or if the program does not contain

any explicit processing blocks—are assigned to an implicit event block START-

OF-SELECTION, which is inserted before any START-OF-SELECTION event blocks.

This event keyword is triggered when the program has completed all selection

screen events.

If the program is linked to a logical database, preparatory tasks can be per-

formed at START-OF-SELECTION before the logical database imports the data. If

the program is not linked to a logical database, this event block becomes a type

of “main program” from which procedures or screens are called. See Listing 9.6

for an explicit example and Listing 9.7 for an implicit example.

* PAI
AT SELECTION-SCREEN.

PERFORM pai_of_selection_screen.
START-OF-SELECTION.

PERFORM selection.
END-OF-SELECTION.

PERFORM e05_layout_build USING gs_layout. "wg. Parameters
* Call ABAP/4 List Viewer

CALL FUNCTION 'REUSE_ALV_HIERSEQ_LIST_DISPLAY'
EXPORTING

i_callback_program = g_repid
* I_CALLBACK_PF_STATUS_SET = ' '
* I_CALLBACK_USER_COMMAND = ' '

is_layout = gs_layout
it_fieldcat = gt_fieldcat[]

* IT_EXCLUDING =
it_special_groups = gt_sp_group[]

* IT_SORT =

Chapter 9 Basic ABAP Programs and Interface Creation264
* IT_FILTER =
* IS_SEL_HIDE =
* I_SCREEN_START_COLUMN = 0
* I_SCREEN_START_LINE = 0
* I_SCREEN_END_COLUMN = 0
* I_SCREEN_END_LINE = 0
* i_default = g_default

i_save = g_save
is_variant = g_variant
it_events = gt_events[]

* IT_EVENT_EXIT =
i_tabname_header = g_tabname_header
i_tabname_item = g_tabname_item
is_keyinfo = gs_keyinfo

* IS_PRINT =
* IMPORTING
* E_EXIT_CAUSED_BY_CALLER =

TABLES
t_outtab_header = gt_scarr
t_outtab_item = gt_spfli.

Listing 9.6 Example of Several Event Blocks

*&---
*& Report Z_HELLO_WORLD_SIMPLE
*&
*&---
*&
*&
*&---

report z_hello_world_simple.
write / 'Hello World'.

Listing 9.7 Example of an Implicit START-OF-SELECTION

� GET node

The reporting GET event defines an event block whose result is triggered by the

ABAP runtime environment if the logical database to which the program is

linked provides data in the work area node. The GET node also controls the

behavior of the logical database. The event blocks after GET are implemented

internally as procedures. Declarative statements in GET event blocks create local

data. GET event blocks follow the START-OF-SELECTION event and are followed

by the event block END-OF-SELECTION.

� END-OF-SELECTION

In this report event block, all data read by the logical database can be processed.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 9 265
In an executable program without a logical database, there is no need to imple-

ment the event block END-OF-SELECTION.

� AT SELECTION-SCREEN

This statement defines event blocks that are triggered by the ABAP runtime

environment during selection screen processing. The event AT SELECTION-

SCREEN is the basic form of a whole series of events that occur while the selec-

tion screen is being processed. The standard selection screen in an executable

program or in the logical database linked to it is automatically called between

the INITIALIZATION and START-OF-SELECTION events. You can define event

blocks for these events in your program to change the selection screen or pro-

cess user input.

Selection screen events occur immediately before sending a selection screen,

during the Process Before Output (PBO) of the selection screen (AT SELECTION-

SCREEN OUTPUT), after certain user actions on a displayed selection screen (for

example, ON VALUE REQUEST or ON HELP REQUEST), or prior to proceeding to the

START-OF-SELECTION event during execution. They assist in selection screen

processing in the ABAP program or provide validations for the selection screen.

� TOP-OF-PAGE

This list creation event is triggered by the ABAP runtime environment during

the creation of a list. This occurs when a new page is started—that is, immedi-

ately before the first line in a new page is to be output. All list outputs that take

place in the event block are placed below the standard page header of the list.

You cannot output more lines than are available in the page within the event

block, and the NEW-PAGE statement is ignored within this event block.

� END-OF-PAGE

This list creation event is triggered by the ABAP runtime environment during

the creation of a basic list if there is a line reservation in the addition LINE-

COUNT of the initiating statement for a page footer. A list output that takes place

in the event block is placed in this area. Output statements that exceed the

reserved area will be ignored.

� AT LINE-SELECTION

This display of a screen list event is triggered by the ABAP runtime environ-

ment, provided the screen cursor is on a list line and you select a function using

the function code Pick (or press (F2) or double-click on a list line). This was

often used to provide drill-down capability or to provide additional detail.

During the line selection process, any fields output or placed on the line with

the Hide command are returned to their respective global data objects.

Chapter 9 Basic ABAP Programs and Interface Creation266
� AT USER-COMMAND

This display of a screen list event is triggered by the ABAP runtime environment

if, during the display of a screen list, a function with a self-defined function code

was chosen.

Basic ABAP Statements

The ABAP syntax is platform-independent. This means that it always has the same

meaning or function, irrespective of the relational database system and operating

system for the application and presentation server. Applications implemented in

ABAP will also be able to run in future releases owing to the upward compatibility

of the language. The only type of upward compatibility issue would be related to

changing from a non-Unicode system to a Unicode system. For more information

on this topic, please see Chapter 11.

For the ABAP syntax, the following general rules apply:

� ABAP programs consist of individual sentences (statements).

� The first word in a statement is called the ABAP keyword, although the keyword

may be optional (COMPUTE, for example).

� Each statement ends with a period.

� Words must always be separated by at least one space.

� Statements can be indented.

� ABAP keywords, additions, and operands can be either upper- or lowercase (the

ABAP runtime system does not differentiate).

� Statements can extend beyond one line.

� You can place several statements on a single line (though this is not generally

recommended).

� Lines beginning with an asterisk (*) in the first column are recognized as com-

ment lines and ignored.

� Double quote marks (") indicate that the remainder of the line is a comment.

Note

Although the ABAP runtime system does not differentiate between upper- and

lowercase, it has become customary to write keywords and their additions in

uppercase letters and operands in lowercase. This form of representation is also

used throughout this book. It can be achieved in your own program by clicking on

the Pretty Printer button and setting the appropriate option in the settings (Utili-

ties • Settings • ABAP Editor • Pretty Printer).
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 9 267
You can combine consecutive statements with an identical beginning into a

chained statement by doing the following:

� Write the identical beginning part of the statement followed by a colon.

� After the colon, list the end parts of the statements (separated by commas).

Note

This short form merely represents a simplified form of syntax and does not offer

an improvement in performance.

The ABAP runtime system processes each of the individual statements. The short

form makes the most sense with certain statements (for example, TYPES, DATA,

SELECT-OPTIONS, PARAMETERS, CLEAR, MOVE, ADD, or WRITE).

Normally, a program is not made up of a single block, but of several units. Many of

these modularization units can be used in more than one program. A good pro-

gram should have at least the database access encapsulated (known also as a reuse

component). This creates a division between the design of the program and the

database accesses. It is then possible for you to use the same database accesses for

different user dialogs or programs.

As an additional benefit of such an encapsulation, often it is possible to buffer the

data within the encapsulation, meaning that it needs to be retrieved from the data-

base only once. As an example, a number of standard function modules retrieve

data from various tables and store it within the function group. Later attempts to

retrieve the same data retrieve it from the internal tables within the function

group rather than retrieve it again from the database tables. A common example

of this type of buffering within a database encapsulation is the retrieval of address

data. As a result, any address retrieval for a customer, vendor, or partner benefits

from this optimization. Figure 9.5 shows an example of this.

Figure 9.5 Example of Database Encapsulation

Chapter 9 Basic ABAP Programs and Interface Creation268
A modularization unit is a part of a program where a particular function is encap-

sulated. You place part of the source code in a “module” to improve the transpar-

ency of the program and to use the corresponding function in the program several

times (or in other programs if the modularization is global) without having to

implement the entire source code again on each occasion. The improvement in

transparency results from the program becoming more function-oriented. It

divides the overall task into subfunctions, which are the responsibility of the cor-

responding modularization unit.

Modularization also simplifies both program maintenance and future design

changes. It simplifies maintenance because you need to make changes to the func-

tion or corrections to the modularization unit only once and not throughout the

programs. If the requirements change, often it is possible to switch out one modu-

larization call for another. You can also process a call as a unit in the Debugger

when executing your program.

It is possible to provide modularization either locally or globally. You have two

techniques for local program modularization: subroutines (form routines) and

methods within local classes. Local modularization units, by definition, are avail-

able only in the program in which they are implemented. No other program must

be loaded to the user context at runtime when you use a local modularization unit.

Warning

For historical reasons, it is technically possible to call a subroutine from another

program. You should not use this option, however, because this technique contra-

dicts the principle of encapsulation of data and functions.

As with local program modularization, there are two techniques for global modu-

larization: function modules and methods within global classes. Global modular-

ization units can be used by any number of programs at the same time. The

globally defined modularization units are stored in the ABAP Repository and only

loaded when requested by the calling program.

Ideally, the modularization units that are called do not use the data objects of the

calling program directly. Nor should the calling program change the data objects

of the modularization unit directly. This principle is known as data encapsulation.

This is an important technique in developing transparent, maintainable source

code.

Parameters are used to exchange data between the calling code and the modular-

ization unit. The total number of parameters in a modularization unit is called the
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 9 269
interface or signature. Parameters are differentiated on whether they are used to

pass data into the modularization unit (importing parameters), return data from

the modularization unit (exporting parameters), or pass data into and return from

the modularization unit (changing parameters).

ABAP Subroutine

A subroutine has the following characteristics:

� It is introduced with the FORM statement.

� You specify the name of the subroutine and the interface after FORM.

� The statements of the subroutine follow the FORM statement.

� The ENDFORM statement concludes the subroutine.

In the interface definition, you list the formal parameters of the subroutine and

type them. A formal parameter is how you address the data object provided in the

calling code within the subroutine. You must specify the pass type for each param-

eter:

� Call by value: USING VALUE

� Call by value and result: CHANGING VALUE

� Call by reference: CHANGING or USING (although CHANGING is recommended if the

contents are changed)

You must specify the additions TABLES, USING, CHANGING, and RAISING, in this order

(see Listing 9.8 and Listing 9.9 for an example of multiple types). Specifying TABLES

after USING or CHANGING creates a formal parameter called TABLES. Likewise, speci-

fying USING after CHANGING creates a formal parameter called USING.

IF cursor_field = 'SOURCE_ID' AND cursor_value NE space.
PERFORM create_request
USING cursor_value

abap_pgeditor->abap_editor->context->context_type
CHANGING l_wb_request.

ELSE.

Listing 9.8 Call to a Subroutine with Both USING and CHANGING

FORM create_request USING p_name TYPE progname
p_type

CHANGING p_l_wb_request.
DATA: l_scope_objects TYPE rinfoobj,

l_scope_objtypes TYPE rseutypes,
l_object_type TYPE seu_objtype,

Chapter 9 Basic ABAP Programs and Interface Creation270
l_object_name TYPE rsfind.
l_object_type = p_type.
l_object_name = p_name.
CALL METHOD

cl_wb_infosystem=>create_where_used_list_request
EXPORTING

p_object_type = p_object_type
p_object_name = l_object_name

p_scope_objects = l_scope_objects
p_scope_object_types = l_scope_objtypes

IMPORTING
p_wb_request = p_l_wb_request

EXCEPTIONS
execute_in_batch = 1
action_cancelled = 2
error_occured = 3
OTHERS = 4.

ENDFORM. "create_request

Listing 9.9 The Subroutine (FORM Routine)

With the addition of RAISING, class-based exceptions can be passed, which are trig-

gered in the subroutine or propagated to the subroutine by the ABAP runtime

environment or by using the statement RAISE EXCEPTION, but are not handled in a

TRY block.

Internal tables should be passed with either USING or CHANGING. The other advan-

tage of using one of these is that you can pass internal tables other than standard

tables, for example sorted or hashed. We recommend that all parameters for any

type of modularization unit be typed. Typing provides additional syntax checking

during activation and provides faster execution during runtime.

ABAP Function Module

A function module is a routine or reuse component that is stored centrally in the

Function Library of an SAP system. Each function module has an interface with

parameters for importing or exporting data. The main purpose of a function mod-

ule is its reusability. It therefore belongs to the reuse components. Function mod-

ules can also be accessed from outside the system by external systems or

processes if they are a remote-enabled module.

Function modules are assigned to a function group. Each function group is a col-

lection of function modules that have similar functions or process the same data.

A function group can contain the same components as an executable program.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 9 271
(From a system perspective, they are a type of program but are not executable

directly.) Table 9.2 shows the types of components that can be placed in a function

group.

As for subroutines, a function module can contain its own local types and data

object definitions. These can only be seen within the function module. The inter-

face of a function module can contain the elements shown in Table 9.3. Figure 9.6

shows a function module with all elements. You should type interface parameters

with types from the ABAP Dictionary.

Component Purpose

Data object These are global in relation to the function group; that is, they

are visible to and can be changed by all function modules

within the group.

Subroutine These can be called from all function modules in the group.

Screens These also can be called from all function modules within the

group.

Table 9.2 Function Module Elements

Element Purpose

Import parameter Values or variables of the calling program can be transferred to

non-optional import parameters when calling the function

module. The optional parameters do not need to be supplied

during the call.

Export parameter The calling program accepts the output of the function module

by assigning a receiving variable to an export parameter.

Export parameters are always optional.

Changing parameter You can transfer variables from the calling program to the

function module, where they are changed and returned to the

calling program.

Tables parameter

(obsolete)

This parameter is similar to the changing parameter in that the

table provided can be changed. However, it can only be used

for standard tables. The formal parameter specified by this

parameter within the function module will always have a

header line.

Table 9.3 Function Module Elements

Chapter 9 Basic ABAP Programs and Interface Creation272
Figure 9.6 A Function Module Interface Documented as Comments

You can use the logical expression IS SUPPLIED within a function module to see if

an actual parameter was set for a formal parameter during a call. The older logical

expression IS REQUESTED should no longer be used. The expression IS REQUESTED

checked only the output parameter, whereas the logical expression IS SUPPLIED

can be used with all optional parameters. The expression IS INITIAL should not be

used because it does not take into account that a default value was used.

If a program calls a function module, the entire corresponding function group is

loaded into the same internal session as the calling program, and the function

Internal tables should be passed with import, export, or chang-

ing parameters. The other advantage of using one of these (as

with subroutines) is that you can pass internal tables other

than standard tables, for example, sorted or hashed tables.

Exceptions These can be raised by the function module in error situations

and provide information regarding the processing error. Excep-

tions should always be caught and handled by the calling pro-

gram.

Element Purpose

Table 9.3 Function Module Elements (Cont.)
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 9 273
module is executed. The function group remains loaded in memory until the call-

ing program is closed. When you call another function module of this group, it is

processed without needing to be reloaded, and the same global data exists. There-

fore, if you call a function module that stores values in a global data object of the

function group, other function modules in the same group can access this data

when they are called during the same program.

You should note the Optional and Pass Value checkboxes (which in the example

are shortened to Opt… and Pa…) in Figure 9.7, which control if the parameter is

required and if it is copied (pass by value). In Figure 9.8, you should note that the

Optional checkbox does not exist because all export parameters are optional.

Figure 9.9 shows the changing parameters. Figure 9.10 shows the table parameters.

Note that the pass by value option does not exist. Finally, Figure 9.11 shows the

exceptions for this function module.

Figure 9.7 Function Module Import Parameters

Figure 9.8 Function Module Export Parameters

Figure 9.9 Function Module Changing Parameters

Chapter 9 Basic ABAP Programs and Interface Creation274
Figure 9.10 Function Module Tables Parameters

Figure 9.11 Function Module Exceptions

ABAP Classes and Methods

In the course of extending the ABAP language to include object-oriented concepts,

global classes were introduced that use methods to provide functions. Like func-

tion modules, methods also have an interface, known as a signature, which con-

sists of importing, exporting, changing, and returning parameters and exceptions.

In addition to methods, classes have other components. They contain global data

objects known as attributes. In the same way that global data objects of a function

group can be accessed by all the function modules in the group, all methods can

access the attributes of their classes.

With function groups, the global data objects are not visible outside the function

group. This is the encapsulation of data in a function group. Attributes are also

normally encapsulated within the class and can therefore only be read or changed

using methods of the same class. However, in contrast to function modules,

classes also allow you to make specific attributes visible to the users of the class. A

distinction is therefore made between public and private attributes.

This distinction is applied not only to attributes, but also to methods. Whereas all

function modules can be called from outside the function group, only public

methods are available outside the class. Private methods can only be called by

other methods of the same class and are thus similar to subroutines (form rou-

tines) within a function group.

© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 9 275
The major difference between global classes and function groups is that a function

group with its global data objects can only be loaded once to the program context

for each main program, but the data of a global class can be loaded as many times

as you like. This is known as multiple instantiation of the class. In practice, it means

the global data object values are the same for all function module calls, because

you have only one copy of each of the data objects of a function group. A class can

have several instances, each of which is stored separately in the program context

of the main program. Each instance can therefore have different attribute values.

A method can see different values in the attributes depending on the instance

from which you called it.

Attributes that can have different values for each instance are known as instance

attributes to distinguish them from static (or class) attributes. Static attributes

exist only once for each program context, regardless of how many class instances

are generated. If instance methods access a static attribute, all instances see the

same value.

Note the Pass Value and Optional checkboxes (which, in Figure 9.13, are shortened

to P… and O…), which control if the parameter is copied (pass by value) and is

required.

Figure 9.12 shows the attributes of a method. Figure 9.13 shows the parameters for

the method. Figure 9.14 shows the exceptions for the method. The beginning of

the method is shown in Listing 9.10.

Figure 9.12 Method Attributes

Chapter 9 Basic ABAP Programs and Interface Creation276
Figure 9.13 Method Parameters

Figure 9.14 Method Exceptions

method convert_number_base.
data:

lv_factor type P length 10,
lv_converted_number type P length 10,
lv_src_nbr type C length 99,
lv_iterations type I,
lv_position type I,
lv_max_value type I,
lv_digit type I,
lv_exponent type I.

field-symbols:
<digit> type C.

constants:
lc_starting_factor type I value '19',
lc_number_base type C length 36

value '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ'.
if source_base is initial or

destination_base is initial.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 9 277
raise base_not_identified.
endif.
lv_iterations = strlen(lc_number_base).

Listing 9.10 Method Coding

Note

You should note that the terms instance and object are often used interchange-

ably. Further details regarding ABAP object-oriented programming is discussed in

Chapter 14.

As with function modules and subroutines, you have the capability to import,

export, change, and produce exceptions. Methods also provide the ability to

return a value, which allows the call to be placed within either a COMPUTE statement

or a logical expression. Another difference is that every parameter is required to be

typed. This is different from both subroutines and function modules, where it is a

recommendation that the parameters be typed.

ABAP Selection Screen

In general, selection screens are used for entering selection criteria for data selec-

tion. From a technical perspective, selection screens are Dynpros. However, they

are not designed by the developer directly, but are generated in accordance with

declarative statements in the source code.

The selection screen has the following standard functions:

� Text on the selection screen can be maintained in several languages. At runtime

the text is automatically displayed in the user’s logon language.

� The system checks types automatically.

� In addition to single value entries (PARAMETERS), you can also implement com-

plex selections (SELECT-OPTIONS) on the selection screen. With a complex

selection (SELECT-OPTIONS), the user can enter multiple values, intervals, com-

parative conditions, or even patterns as restrictions.

� If the input field is defined using an ABAP Dictionary element, the field docu-

mentation can be displayed on the input field by pressing (F1). The value help

attached to the ABAP Dictionary type displaying possible inputs can be called

up by pressing (F4). It is also possible for the label (selection text) to use the long

text of the data element.

Chapter 9 Basic ABAP Programs and Interface Creation278
� You can easily save the values (or calculation in the case of a dynamic date or

time calculation) of complicated selection screens as selection screen variants

for reuse or use in background processing.

Listing 9.11 shows the coding for a selection screen, and Figure 9.15 shows the

resulting generated selection screen.

***-------------------------------- Parameters/Select-options
selection-screen begin of block c01
with frame title text-c01.

parameters:
p_custzg as checkbox default 'X',
p_wrkbch as checkbox default 'X',
p_repair as checkbox default 'X',
p_others as checkbox default 'X'.

selection-screen end of block c01.
selection-screen begin of block c02
with frame title text-c02.

parameters:
p_r_po radiobutton group sort,
p_e_s_r radiobutton group sort,
p_r_s_d radiobutton group sort,
p_d_s_r radiobutton group sort,
p_r_d_s radiobutton group sort.

selection-screen end of block c02.
selection-screen begin of block c03
with frame title text-c03.

select-options:
s_trkorr for gs_outtab-trkorr.

selection-screen end of block c03.
selection-screen begin of block c04
with frame title text-c04.

select-options:
s_user for gs_outtab-as4user modif id c04.

selection-screen end of block c04.

parameters:
p_relsed as checkbox default 'X',
p_byuser as checkbox user-command activate,
p_missng as checkbox,
p_apprvl as checkbox,
p_apmiss as checkbox,
p_sumrze as checkbox default 'X'.

Listing 9.11 Coding for a Selection Screen
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 9 279
Figure 9.15 Generated Selection Screen

Further details regarding selection screens are discussed in Chapter 13.

Authorization Checks

Critical data and parts of the functional scope of the SAP system must be protected

from unauthorized access. You have to implement authorization checks in your

program so that users can only access areas for which they are authorized. To code

an authorization check, use the AUTHORITY-CHECK statement to check whether the

current user has the authorization required for executing the function in his mas-

ter record. Depending on the check result returned in the SY-SUBRC, you can con-

tinue accordingly. If the return code equals 0 (zero), then the user has the required

authorization. Authorization objects can also be defined in report transaction

codes to provide additional restrictions other than simply by transaction code.

Chapter 9 Basic ABAP Programs and Interface Creation280
Under normal circumstances, the definition of authorization objects is part of data

modeling and the creation of database tables. Implementing the authorization

check is one of the tasks of the developer who programs access to the database

tables. The subsequent steps, such as defining the authorizations and user profiles

and assigning them to the user master records, are the tasks of the administrator

or security team.

Before you can implement the required authorization check in your program, you

must first determine the structure (the fields) of the corresponding authorization

object. An object usually consists of the ACTVT (activity) field and one or several

other fields, which specifies the data type to be protected (for example, material

number, organizational unit, account number, and so on).

Tip

If you do not want to carry out a check for a field, either do not enter it in the

AUTHORITY-CHECK statement or enter DUMMY as the field value. DUMMY is a pre-

defined description entered without quotation marks.

Consider this example of a suppressed field check: When a change transaction is

called, the system should always check immediately whether the user has any

change authorization. If the check fails, an appropriate message is to be output to

the user immediately. (See the first AUTHORITY-CHECK in Listing 9.12 for an exam-

ple of the syntax; Figure 9.16 shows the authorization object.)

if p_s_develop-devclass = space.
authority-check object 'S_DEVELOP'

id 'DEVCLASS' dummy
id 'OBJTYPE' field p_s_develop-objtype
id 'OBJNAME' field p_s_develop-objname
id 'P_GROUP' dummy
id 'ACTVT' field l_develop_actvt.

else.
authority-check object 'S_DEVELOP'

id 'DEVCLASS' field p_s_develop-devclass
id 'OBJTYPE' field p_s_develop-objtype
id 'OBJNAME' field p_s_develop-objname
id 'P_GROUP' dummy
id 'ACTVT' field l_develop_actvt.

endif.

Listing 9.12 Call to an Authorization Check

Again, to avoid spelling errors in object and field names, you can click on the Pat-

tern button to generate the appropriate AUTHORITY-CHECK statement.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 9 281
Figure 9.16 Authorization Object

ABAP Dynpros

As mentioned earlier, standard screens, or Dynpros, are designed by the developer

directly through the use of the Screen Painter. A screen consists not only of its lay-

out with input and output fields, buttons, and other screen elements, but also a

processing logic known as flow logic. The fact that the ABAP Dictionary is inte-

grated into the system provides automatic consistency checks for screen input

fields. These checks include type checks, foreign key checks, and fixed value

checks.

The checks we mentioned can be complemented with other program checks. Tech-

niques are available for screens that allow you to control the order in which checks

are performed. If an error occurs, the appropriate fields are made input-ready

again.

Chapter 9 Basic ABAP Programs and Interface Creation282
The layout can be designed very flexibly, with input fields, output fields, radio but-

tons, check fields, and buttons with which corresponding functions of the pro-

gram can be executed.

Further, screens have the same formatting options as lists and selection screens:

Fixed point numbers and dates are formatted according to the settings in the user

master record, times are formatted as HH:MM:SS, currency amounts are formatted

according to the currency, and physical measurements (lengths, weights, quanti-

ties, etc.) are formatted according to their unit fields.

In theory, there are two options for starting a screen sequence:

� By calling the first screen (using the CALL SCREEN statement) from a processing

block in your program

� By creating a dialog transaction that references the program and the first screen

After a screen is processed, the statically or dynamically defined screen sequence

is processed. A formal next screen of 0 (zero) returns processing to the point where

the screen was called or ends the dialog transaction.

Screens can appear in executable programs, function groups, or module pools:

� Executable program

Executable programs (reports) use screens to display data in addition to the list

output, or to replace the list output display completely, and sometimes for the

display of an ALV Grid. You can also use screens to enter and change data in the

list. For the purpose of reusability and data encapsulation, you should no longer

create screens directly in reports, but use screens in function groups instead.

� Function group

Function groups often use screens to encapsulate a screen or screen sequence

for reuse. SAP provides a vast number of such encapsulated screens or screen

sequences. You can find various SAP standard function modules in the Reposi-

tory Information System simply by looking for “popup” as part of the function

module name. These encapsulated screens exist for displaying messages,

accepting values, and selecting between options.

� Module pool

Module pools can only be started with a transaction code; they cannot be tested

as other types of executable programs directly in the ABAP Workbench (Trans-

action SE80) or ABAP Editor (Transaction SE38). In contrast to screens in func-

tion groups, you cannot encapsulate module pools or provide an external

interface.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 9 283
When a screen is displayed for a user, the presentation server performs all interac-

tions until a function is selected. A function corresponds to either a button on the

application toolbar, a menu, one of the function keys ((F1) through (F12)), or

(Enter). Each of these actions by a user assigns the function code defined by the

programmer to a special field associated with every screen. This field is normally

referred to as the OK_CODE. You normally name this field and provide a global field

with the same name to receive the value in your program. The field should be

defined to use the type SYUCOMM. This transport to this variable is automatic.

During the Process After Input (PAI) you can determine what action the user per-

formed through the contents of this variable.

The statement CALL SCREEN accesses the Dynpros of the relevant main program of

the current program group, and these use the global data and dialog modules of

the main program. If the specified Dynpro does not exist in the main program of

the program group, an untreatable exception occurs.

You use the addition STARTING AT to open a new popup level and to display all

screens of the called Dynpro sequence in a modal dialog box rather than as a full

screen. The upper-left corner of the dialog window is determined by the values fol-

lowing the addition STARTING AT for the column and line. The values refer to the

window with popup level 0. The lower-right corner is set automatically from the

size of the window, or you can specify it after ENDING AT. For column and line num-

ber (for either the top-left or bottom-right corner), data objects of type I are

expected. The values of the top-left corner should be smaller than those of the bot-

tom-right corner; otherwise, the behavior is undefined. The maximum popup

level is 9.

If, during the processing of a modal dialog box, a new Dynpro sequence is called, it

must be started in another popup level. You cannot use the statement CALL SCREEN

without adding STARTING AT in this case. When calling a Dynpro in a dialog win-

dow, specify the window as a modal dialog window in its properties and set an

appropriate GUI status beforehand. We recommend that a Dynpro sequence in a

modal dialog window consist of only one Dynpro.

Further details regarding Dynpro screens are discussed in Chapter 12.

Dialog Messages

You use the MESSAGE statement to send dialog messages to the users of your pro-

gram. When you do this with an actual message defined from a message class, you

Chapter 9 Basic ABAP Programs and Interface Creation284
must specify at least a three-digit message number, the message class, and the

type of the message. It is also possible to provide the text of the message or just the

type of the message.

Message number and message class clearly identify the message to be displayed.

You use the message type (either A, E, I, S, W, or X) to define how the ABAP runtime

should process the message. Table 9.4 offers an explanation of these message

types.

If the specified message contains placeholders (specified as either & or &#, where #

is 1, 2, 3, or 4), you can supply them with values from your program by using the

WITH addition. Instead of the placeholders, the transferred values then appear in

the displayed message text. There can only be up to four placeholders, and if a

number is part of the placeholder, it specifies the order in which the placeholders

are filled. This allows for text translation that may require the placeholders in a dif-

ferent order (see Listing 9.13 for an example). Messages can either be displayed in

modal dialog boxes or in the status bar of the screen based on the user’s settings.

Type Function General Program Behavior

A Termination The message appears in a dialog box, and the program termi-

nates. When the user has confirmed the message, control returns

to the next-highest area menu.

E Error Depending on the program context, an error dialog appears or

the program terminates.

I Information The message appears in a dialog box. Once the user has con-

firmed the message, the program continues immediately after

the MESSAGE statement.

S Status The program continues normally after the MESSAGE statement,

and the message is displayed in the status bar of the next screen.

W Warning Depending on the program context, a warning dialog appears or

the program terminates.

X Exit No message is displayed, and the program terminates with a

short dump. Program terminations with a short dump normally

only occur when a runtime error occurs. Message type X allows

you to force a program termination. The short dump contains the

message ID.

Table 9.4 Message Types and Their Behavior
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 9 285
How a message is processed depends on its type and on the context in which it is

sent.

If the introductory statement of a program contains the addition MESSAGE-ID id

and your message to be displayed is of the same class, you can use the short form

of the message statement without specifying the class. Listing 9.14 contains two

examples of messages using this form, and Listing 9.15 shows the introductory

statement.

call function 'ENQUEUE_ESRDIRE'
exporting
mode_trdir = l_enq_mode
name = incl2
x_name = ' '
_scope = '2'
_wait = ' '

exceptions
foreign_lock = 01
system_failure = 02.

if sy-subrc ne 0 and rs38l-extern = space.
message id sy-msgid

type 'E'
number sy-msgno
with sy-msgv1 sy-msgv2 sy-msgv3 sy-msgv4.

endif.

Listing 9.13 Message Specifying All Options

call function 'CHANGEDOCUMENT_OPEN'
exporting objectclass = 'WFRULES '

objectid = objectid
planned_change_number = planned_change_number
planned_or_real_changes = planned_or_real_changes

exceptions sequence_invalid = 1
others = 2.

case sy-subrc.
when 1. message a600 with 'SEQUENCE INVALID'.
when 2. message a600 with 'OPEN ERROR'.

endcase.

Listing 9.14 Two Messages in the Shortened Form

function-pool wfrc
message-id cd .

Listing 9.15 Introductory Statement Specifying the Message Class

This general behavior is ultimately driven by the context of where the call to the

message statement occurs. One unique context is when you have no screen. This

Chapter 9 Basic ABAP Programs and Interface Creation286
includes the following processing blocks; all other processing blocks are associ-

ated with screen processing and are reacting to user input:

� The program constructor LOAD-OF-PROGRAM

� PBO modules (PBO of screens); see Chapter 12 for more information

� The selection screen event AT SELECTION-SCREEN OUTPUT (PBO of a selection

screen)

� The reporting events INITIALIZATION, START-OF-SELECTION, GET, and END-OF-

SELECTION

� The list events TOP-OF-PAGE and END-OF-PAGE

To make Table 9.5 more concise, these processing blocks are structured into two

groups:

� Group 1

LOAD-OF-PROGRAM, PBO module of screens, AT SELECTION-SCREEN OUTPUT

� Group 2

Reporting and list events (INITIALIZATION, START-OF-SELECTION, GET, END-OF-

SELECTION, TOP-OF-PAGE, and END-OF-PAGE)

Type Display Processing

A Dialog box Program terminates, and control returns to last area

menu.

E Group 1: Dialog box

Group 2: Status line of

current window

Group 1: Behaves like type A.

Group 2: Program termination and display of an empty

screen with empty GUI status. After the user action:

Return to the calling position of the program.

I Group 1: Status line of

the next screen

Group 2: Dialog box

Program continues processing after the MESSAGE state-

ment.

S Status line of next

screen

Program continues processing after the MESSAGE state-

ment.

W Group 1: Status line of

the next screen

Group 2: Status line of

the current window

Group 1: Behaves like type S.

Group 2: Program termination and display of an empty

screen with empty GUI status. After the user action:

Return to the calling position of the program.

X None Triggers a runtime error with short dump.

Table 9.5 General Message Type Behavior
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 9 287
Another unique context includes all situations where a screen is being processed;

that is, the program is reacting to user input. In ABAP programs, this means all Pro-

cess After Input (PAI) modules. Table 9.6 shows the message behavior during PAI.

A unique context includes all situations where a selection screen is being pro-

cessed; that is, the program is reacting to user input. In ABAP programs, this corre-

sponds to the AT SELECTION-SCREEN processing blocks, except those with the

OUTPUT addition. This is shown in Table 9.7.

Type Display Processing

A Dialog box Program terminates, and control returns to last area

menu.

E Status line PAI processing is terminated, and control returns to the

current screen. All of the screen fields for which there is a

FIELD or CHAIN statement are ready for input. The user

must enter a new value. The system then restarts PAI pro-

cessing for the screen using the new values. Error mes-

sages are not possible in process on help (POH) request

processing or process on value (POV) request processing.

Instead, a runtime error occurs.

I Dialog box Program continues processing after the MESSAGE state-

ment.

S Status line Program continues processing after the MESSAGE state-

ment.

W Status line Like type E, but the user can confirm the message by

pressing (Enter) without having to enter new values. The

system then resumes PAI processing directly after the

MESSAGE statement. Warning messages are not possible

in POH or POV processing. Instead, a runtime error occurs.

X None Triggers a runtime error with short dump.

Table 9.6 Message Behavior During PAI

Type Display Processing

A Dialog box Program terminates, and control returns to last area

menu.

Table 9.7 Messages During a Selection Screen

Chapter 9 Basic ABAP Programs and Interface Creation288
A unique context includes all situations where a list is being processed; that is, the

program is reacting to user interaction with lists. In ABAP programs, this includes

the following processing blocks:

� AT LINE-SELECTION

� AT USER-COMMAND

� AT PFnn

� TOP-OF-PAGE DURING LINE-SELECTION

Table 9.8 shows the behavior during list processing.

E Status line Selection screen processing terminates, and the selection

screen is redisplayed. The screen fields specified through

the additions to the AT SELECTION-SCREEN statement

are ready for input. If there are no additions to the state-

ment, then all screen fields are ready for input. The user

must enter a new value.

The system then restarts the selection screen processing

using the new values. You cannot use error messages with

the ON HELP-REQUEST, ON VALUE-REQUEST, and ON EXIT

additions. Instead, a runtime error occurs.

I Dialog box Program continues processing after the MESSAGE state-

ment.

S Status line Program continues processing after the MESSAGE state-

ment.

W Status line Like type E, but the user can confirm the message by

pressing (Enter) without having to enter new values. The

system then resumes selection screen processing directly

after the MESSAGE statement. You cannot use warnings

with the ON HELP-REQUEST, ON VALUE-REQUEST, and ON

EXIT additions. Instead, a runtime error occurs.

X None Triggers a runtime error with short dump.

Type Display Processing

A Dialog box Program terminates, and control returns to last area menu.

E Status line Processing block terminates. Previous list levels remain displayed.

Table 9.8 Messages During List Processing

Type Display Processing

Table 9.7 Messages During a Selection Screen (Cont.)
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Important Terminology Chapter 9 289
The last unique context is in function modules and methods. Messages have two

different functions in function modules and methods:

� Normal message

� Triggering an exception

If you use messages in function modules and methods without the RAISING addi-

tion in the MESSAGE statement, the message is handled normally according to the

context in which it is called within the function module or method. In other

words, if it is not caught, it behaves as it would from one of the other contexts,

depending on where the call for the function module or method occurs.

If you use messages in function modules and methods with the addition RAISING

exc in the MESSAGE statement, the way the message is handled depends on whether

the calling program catches the exception exc or not:

� If the calling program does not catch the exception, the message is displayed

and handled according to the context in which it occurs in the function module

or method from which it was called. This, again, is as if the error occurred where

the call to the function module or method was made.

� If the calling program catches the exception, the message is not displayed.

Instead, the procedure is interrupted in accordance with the message type, and

processing returns to the calling program. The contents of the message are

placed in the system fields SY-MSGID, SY-MSGTY, SY-MSGNO, and SY-MSGV1

through SY-MSGV4.

Important Terminology

For the certification, you should know that repository objects are development

objects such as programs or classes in the ABAP Workbench. Each repository

object is assigned to a package. A change request contains at least one task for each

developer working on the change. A change request records and manages all

I Dialog box Program continues processing after the MESSAGE statement.

S Status line Program continues processing after the MESSAGE statement.

W Status line Like type E.

X None Triggers a runtime error with short dump.

Type Display Processing

Table 9.8 Messages During List Processing (Cont.)

Chapter 9 Basic ABAP Programs and Interface Creation290
changes made to repository objects and customizing settings during a develop-

ment project. A task is the information carrier for entering and managing all

changes to repository objects and customizing settings performed by developers

within a development project. Simply put, development is assigned to a task that

is part of a change request.

You should understand that global declarations appear in a section after the intro-

ductory program statement of an ABAP program in which the data types, classes,

and data objects that are visible in the whole program can be declared.

A modularization unit of an ABAP program is something that cannot be separated

or nested. Processing blocks are procedures, dialog modules, and event blocks.

They contain statements that are structured using control structures in statement

blocks. Every non-declarative statement of an ABAP program is part of a process-

ing block. A procedure interface consists of formal parameters and states the pos-

sible exceptions of the procedure.

With pass by reference, you pass only the address of the actual parameter to the

formal parameter. Formal parameters do not occupy their own memory space.

Within the subroutine, you work only with the field from the calling program. If

you change the formal parameter, the field contents in the calling program

change, too.

In pass by value, a local data object is created as a copy of the actual parameter, and

when the procedure is called, the value of the actual parameter is passed to it.

Changed formal parameters are only passed to the actual parameter if the proce-

dure ends without errors.

The term event can mean either a component of a class or interface declared using

(CLASS-)EVENTS or an event of the ABAP runtime environment. We discussed the

latter in this chapter. More details of the former can be found in Chapter 14. Events

in classes trigger event handlers, and events of the ABAP runtime environment

trigger event blocks. An event block is a processing block without a local data area

that can be defined in every ABAP program—except for subroutine pools, class

pools, and interface pools—and is processed when a specific event of the ABAP

runtime environment occurs. It begins with an event keyword and ends with the

start of the next modularization.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Practice Questions Chapter 9 291
Practice Questions

These practice questions will help you evaluate your understanding of the topic.

The questions shown are similar in nature to those found on the certification

examination. Although none of these questions will be found on the exam itself,

they allow you to review your knowledge of the subject. Select the correct answers

and then check the completeness of your answers in the following solution sec-

tion. Remember that you must select all correct answers and only correct answers

on the exam to receive credit for the question.

1. ABAP is a programming language that… (Select all that apply.)

� A. Executes on all three levels of the three-tier architecture.

� B. Controls the business logic.

� C. Processes and formats data.

� D. Interacts with the user.

� E. Separates program code from language text.

2. Which events can exist in all types of programs that actually contain execut-

able statements?

� A. LOAD-OF-PROGRAM

� B. INITIALIZATION

� C. START-OF-SELECTION

� D. AT LINE-SELECTION

� E. AT USER-COMMAND

� F. AT PF##

3. Dynpros can be placed in which program types? Select all that apply.

� A. Executables

� B. Module pools

� C. Function groups

� D. Class pools

Chapter 9 Basic ABAP Programs and Interface Creation292
4. A change request is part of a task.

� A. True

� B. False

5. Which statements about ABAP are true?

� A. Each statement must begin with a keyword.

� B. Each statement must end with a period.

� C. ABAP keywords and additions must be in uppercase.

6. A development object can be assigned to only one package.

� A. True

� B. False

7. A development object can be assigned to only one change request.

� A. True

� B. False

8. Each ABAP program that actually contains executable statements… (Select all

that apply.)

� A. Is divided into processing blocks.

� B. Assigns every executable statement to a processing block regardless of it

being in a processing block.

� C. Only assigns executable statements in a processing block to a processing

block.

� D. Uses event blocks to trigger events in ABAP.

� E. Has declarative statements outside of processing blocks that are considered

local.

� F. Has declarative statements inside of processing blocks that are considered

local.

� G. Can be tested from the ABAP Workbench by pressing (F8).
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Practice Questions Chapter 9 293
9. Which modularization units can raise an exception? Select all that apply.

� A. Function modules

� B. Methods

� C. Subroutines (FORM routines)

10. Which types of programs or parts of programs can be tested directly from the

ABAP Workbench or ABAP Editor? Select all that apply.

� A. REPORT

� B. PROGRAM

� C. FUNCTION-POOL

� D. FUNCTION MODULE

� E. CLASS-POOL

� F. METHOD

� G. INTERFACE-POOL

� H. TYPE-POOL

� I. INCLUDE

11. Which method of passing parameters is preferred for its performance?

� A. Pass by reference

� B. Pass by value

12. Which modularization units are global? Select all that apply.

� A. Function modules

� B. Subroutines (FORM routines)

� C. Methods within a local class in the program

� D. Methods within class pools

13. FORM routines (subroutines) can be used in which program types? Select all

that apply.

� A. Executables

� B. Module pools

� C. Function groups

Chapter 9 Basic ABAP Programs and Interface Creation294
� D. Class pools

� E. Interface pools

� F. Subroutine pools

� G. Type groups

14. You can use the logical expression IS SUPPLIED for any formal parameter

passed to which modularization unit? Select all that apply.

� A. Subroutine (FORM routine)

� B. Function module

� C. Static method

� D. Instance method

15. A selection screen can only be defined in an executable program.

� A. True

� B. False

16. Subroutines provide which types of parameters? Select all that apply.

� A. Input

� B. Output

� C. Input/output (changing)

� D. Return values

� E. Exceptions

17. Function modules provide which types of parameters? Select all that apply.

� A. Input

� B. Output

� C. Input/output (changing)

� D. Return values

� E. Exceptions
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Practice Questions Chapter 9 295
18. Methods provide which types of parameters? Select all that apply.

� A. Input

� B. Output

� C. Input/output (changing)

� D. Return values

� E. Exceptions

19. It is not possible to test a function module if another function module of the

same function group contains a syntax error.

� A. True

� B. False

20. Each button on a Dynpro (screen) requires the assignment of a function code.

This function code…

� A. Is used to define global variables that receive a value when the button is

clicked.

� B. Can be used to identify when the button is clicked by looking for the func-

tion code in the screen’s OK_CODE field.

� C. Prevents the function code from be assigned to a menu item.

21. Which message types behave the same regardless of the context in which they

are called? Select all that apply.

� A. A

� B. E

� C. I

� D. S

� E. W

� F. X

22. Authorizations are handled automatically during access to the database inter-

face to restrict data access of the user.

� A. True

� B. False

Chapter 9 Basic ABAP Programs and Interface Creation296
23. Each ABAP program starts with an introductory statement. Which statements

are correct? Select all that apply.

� A. The introductory statement must be the first line in the program.

� B. The introductory statement must be the first statement in the program.

� C. The introductory statement must never be modified.

� D. The introductory statement can be modified.

24. If a user has an object locked in a task within a request (transport), then no one

else can change it until the task and request are released.

� A. True

� B. False

Practice Question Answers and Explanations

1. Correct answers: B, C, D, E

ABAP does not, however, execute on the database server. Although it can be

considered to interact with the database through the database interface, it does

not execute on the database level. Nor does it actually execute on the presenta-

tion server. It interacts with the presentation server normally through the SAP

GUI, but the only execution occurs on the application servers.

2. Correct answer: A

The only event common to all executable programs is LOAD-OF-PROGRAM.

3. Correct answers: A, B, C

Dynpros are not possible in methods or classes.

4. Correct answer: B

A change request holds a task.

5. Correct answer: B

All ABAP statements must end with a period. Whereas it is certainly true that

ABAP requires the statement to begin with a keyword, there are cases where the

keyword is optional. The most obvious is the COMPUTE keyword, which we have

never seen coded in a program (though it certainly helps to know the keyword

exists when you are trying to find help on an arithmetic function while in the

editor). ABAP does not care if the case of the statements is upper, lower, or

mixed.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Practice Question Answers and Explanations Chapter 9 297
6. Correct answer: A

A development object can only be assigned to a single package. It can be reas-

signed to a different package, but it is only ever assigned to one package at a

time.

7. Correct answer: B

A development object can only be assigned to multiple projects or change

requests. Only one project or change request can be active at a time, but over

time, it is common for development objects to be assigned to different projects

and change requests, and they are changed.

8. Correct answers: A, B

A program is divided into processing blocks, and every executable statement is

assigned to a processing block either explicitly or implicitly. Any statement not

explicitly included in a processing block is implicitly included in START-OF-

SELECTION. Declarative statements inside a modularization unit are almost

always considered local, whereas those outside the modularization units are

considered global; the exception that invalidates F is that MODULES and event

block declarations are considered global. Event blocks are called when the ABAP

runtime triggers them.

Whereas almost every ABAP program can be tested simply by pressing (F8)

while in the editor, one type (a module pool) cannot be started directly from the

editor or ABAP Workbench. Module pools (dialog programs) must start with a

particular screen, and the only way is to run the transaction code that associ-

ates the first screen to process. To be able to test in the ABAP Workbench, you

must first navigate to the transaction code, which you can then execute by

pressing (F8).

9. Correct answers: All options

It is currently possible to raise a class-based exception from all three of these

modularization units.

10. Correct answers: A, D, E, F

Reports, function modules, classes, and methods can all be executed and tested

directly. Programs (module pools) can be indirectly tested by testing their cor-

responding transaction code. Function groups, interface pools, type pools, and

includes cannot be tested independently.

11. Correct answer: A

Pass by reference is always preferable when performance is an issue, whereas

pass by value is more suitable for situations where robustness and data consis-

tency are important.

Chapter 9 Basic ABAP Programs and Interface Creation298
12. Correct answers: A, D

Any modularization that can be reused is considered global. A method defined

within a program cannot be reused, nor should a subroutine (form routine).

Both function modules and methods defined in a class pool are considered

global.

13. Correct answers: A, B, C, F

Subroutines cannot be used in classes. Interface pools and type pools cannot

have any executable code.

14. Correct answers: B, C, D

Subroutines do not have optional parameters, and therefore the logical expres-

sion IS SUPPLIED cannot be used.

15. Correct answer: B

Selection screens can be defined in any program that allows screens. Originally,

only one selection screen (screen 1000) was allowed in an executable program,

but with later releases it is now possible to define as many as you want. This

capability is why it is possible to place selection screens in programs other than

just executable programs.

16. Correct answers: C, E

Subroutines technically only provide input/output (CHANGING) types of param-

eters (through USING and CHANGING) and exceptions.

17. Correct answers: A, B, C, E

Function modules provide input (IMPORTING), output (EXPORTING), and input/

output (CHANGING) types of parameters and exceptions (EXCEPTIONS).

18. Correct answers: All options

Methods provide input (IMPORTING), output (EXPORTING), input/output (CHANG-

ING), and return value (RETURNING) types of parameters and exceptions (EXCEP-

TIONS).

19. Correct answer: A

ABAP looks at the whole program during both generation and execution. A syn-

tax error in any part will prevent it from executing.

20. Correct answer: B

The function code of any menu, button, or function key is always placed into

the OK_CODE field associated with the screen. It can also be found in the system

variable SY-UCOMM.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Takeaway Chapter 9 299
21. Correct answers: A, F

The abort or terminate message type always causes a program termination, and

control returns to the last area menu. The exit message type always triggers a

runtime error with short dump.

22. Correct answer: B

It is the programmer’s responsibility to program authority checks to perform

the necessary authorization validation.

23. Correct answers: B, D

The introductory statement must be the first executable line or the first state-

ment executed. It is possible to have comments precede the introductory state-

ment, or the statement may be placed in an INCLUDE, which may be the first

line in the program.

The introductory statement is often modified, most frequently to assign a

default error class to the program.

24. Correct answer: B

No one outside those assigned to the request will have the ability to change the

object, but anyone assigned to the request will have the ability to make a

change (provided it is not actively being worked on).

Takeaway

You need to understand how transports are organized. Remember that a change

request is commonly called a transport and contains tasks assigned to specific

developers. It is also important to recognize the various types of programs: Exe-

cutable programs (also known as reports), module pools (also known as dialog pro-

grams), function groups (which contain function modules), and class pools (which

contain methods) are the primary program types you need to understand. Within

each of these, you need to understand the types of modularization and how events

are triggered.

You also need to be able to distinguish which types of screens, when displayed, use

the SAP GUI versus a web browser. Classical screens, or Dynpros, and selection

screens use the SAP GUI, whereas Web Dynpro and Business Server Pages, for

example, use a web browser. Web Dynpro is discussed in detail in Chapter 16. You

are expected to be able to identify how a classical screen (Dynpro) handles fields

and buttons and their use in function modules. Included with this classic screen

handling are both selection screens and modal dialog boxes.

Chapter 9 Basic ABAP Programs and Interface Creation300
You will need to understand the use of authorization checks and modularization

units. This includes how to call them and options for providing data.

Finally, you must know how messages work in different contexts. You will need to

understand where messages are displayed and the behavior of the program fol-

lowing the message production.

Refresher

You must understand various types of modularization blocks. Events, subrou-

tines, methods, function modules, and dialog modules will all play a part in the

certification examination. You must know how they are defined, how they are

called (including their interface or signature), and how they behave with the pro-

duction of a dialog message. You must have a thorough understanding of the tech-

niques of both pass by value and pass by reference.

Classical screen (Dynpro) handling is also essential knowledge. You must under-

stand how screens are called and what distinguishes a screen from a modal dialog

box and from a selection screen. You should understand how to define all three

and in which types of programs they can be produced.

Table 9.9 shows the key concepts of basic ABAP programs and interfaces creation.

Key Concept Definition

Modularization units The procedural modularization units of an ABAP program are its

processing blocks.

Dynamic program

(Dynpro)

A dynamic program consists of a screen image or layout and its

underlying flow logic.

The main components of a screen are:

� Attributes: such as screen number and next screen

� Layout: the arrangement of texts, fields, and other elements

� Element attributes: definitions of the properties of individual

elements

� Flow logic: calls of the relevant ABAP modules

Authorization check Check to determine whether the current program user has a cer-

tain authorization. For each authorization field of an authoriza-

tion object, a value to be checked is compared with the corre-

sponding entry in the user master record. The corresponding

ABAP statement is AUTHORITY-CHECK.

Table 9.9 Key Concepts Refresher
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Takeaway Chapter 9 301
Tips

As with the majority of the subjects covered in the certification examination, it is

important to have as much practical experience with the subject as possible.

Unlike the majority of subjects found in the certification examination, this is an

area where, if you have been programming in ABAP, you will already have suffi-

cient experience.

Whereas the vast majority of the concepts presented in this chapter should be sec-

ond nature, it is important that you understand the behavioral differences of

interfaces (or signatures) and of message production.

You should now be able to create various types of ABAP programs. You should also

have an understanding of the different types of encapsulation that a program can

use and the interaction between a user and the program through the use of

screens and messages. These skills will allow you to successfully complete this por-

tion of the certification exam.

© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Chapter 10

ABAP Dictionary

Techniques You’ll Master:

� Describe the functions of the ABAP Dictionary in the SAP system

� Define data types in the ABAP Dictionary

� Understand database objects and their use in the ABAP Dictio-

nary

� Define and create domains, data elements, and tables in the

ABAP Dictionary

� Explain tables types in the ABAP Dictionary

� Define the technical attributes of tables in the ABAP Dictionary

� Determine database views, maintenance views, project views,

and help views in the ABAP Dictionary

Chapter 10 ABAP Dictionary304
The ABAP Dictionary centrally manages all of the global data definition in the SAP

system. The ABAP Dictionary helps you define user-defined data types (that is,

data elements, structures, and table types). You can define the structure of data-

base objects such as tables and views and the index for the database objects. An

ABAP Dictionary table defined in the ABAP Dictionary automatically creates a

database in the underlying database. Search helps are an ABAP Dictionary service

used to display a list of possible values for screen fields. Lock objects are another

ABAP Dictionary service, which is used to control the access of the same data, by a

program or user, using the logical lock mechanism.

In this chapter, we cover the ABAP Dictionary in detail. We discuss the technical

details of the ABAP Dictionary domain, data elements, structure and table types,

tables, joins, and database tables. We also cover various types of ABAP Dictionary

views and their use in SAP systems. Finally, we discuss ABAP Dictionary services

such as search help and lock objects, their use, and the steps to create custom

search help and lock objects.

Real-World Scenario

Imagine that you have to develop various custom applications on your cus-

tomer project implementation.

You would need a custom table to store the application data and would

require a number of structures to design the screen. You have to design and

create transparent tables, data elements, domains, search helps, and lock

objects. To create transparent tables, you need to create domains and data

elements. You also have to create search helps and lock objects for your

application that would be used in the SAP screen design and development.

As a development lead, you need to have a thorough understanding of the

ABAP Dictionary objects and be able to explain ABAP Dictionary concepts to

your development team.

Objectives of This Portion of the Test

The objective of this portion of the test is to judge your understanding of the ABAP

Dictionary objects because the ABAP Dictionary is one of the key components of

the SAP system and is required in almost any application development. It is

expected that you have a thorough understanding of ABAP Dictionary objects
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 10 305
such as domains, data elements, structures, and type groups. You should be able to

differentiate between the different types of tables (that is, transparent tables,

pools, and clusters) in the SAP system.

The certification exam will test your knowledge regarding the steps required to

create tables. You will be expected to describe the features of lock objects, search

help, and database views.

Key Concepts Refresher

The ABAP Dictionary is a key component of any application developed in an SAP

system. You need to understand the various ABAP Dictionary objects and their

uses in SAP application development. Without knowledge of the ABAP Dictionary,

it would be almost impossible for you to develop your custom application.

You need to know the following about the ABAP Dictionary objects:

� How to use basic data types and complex data types found in the ABAP Dictio-

nary

� How to define transparent tables using ABAP Dictionary objects such as do-

mains and data elements

� How to create tables with the correct attributes based on your application

requirements

� How to perform the tuning of the ABAP Dictionary table to improve perfor-

mance without modifying the application program

� The difference between database views and maintenance views

� How to use lock objects and search helps

Overview

The ABAP Dictionary is the tool used to manage all ABAP Dictionary objects cen-

trally in the SAP system. You create ABAP Dictionary data types such as data ele-

ments, structures, and table types centrally within the ABAP Dictionary tool. Any

change to a data type definition is automatically propagated to all of the system

components using the data type. The data types can be used in your custom pro-

grams and applications or other ABAP Dictionary objects that you might create.

ABAP Dictionary data types are also referred to as global data types and are avail-

able to all of the repository objects within the system.

Chapter 10 ABAP Dictionary306
There are three categories of ABAP Dictionary types:

� Data elements

This is an elementary ABAP Dictionary type and can therefore be used to

describe a single field or data element. It describes the type, length, and possibly

the number of decimal places. You also define the field labels, output character-

istics, and documentation for the data elements.

� Structures

This is a complex data type that consists of multiple components. Structures

can be used for ABAP Dictionary table definitions, function module parameters,

object method parameters, and the design and definition of ABAP screens. Any

changes in the structure or its component are automatically propagated to the

repository objects wherever the specific structure is being used.

� Table types

This is a complete description of an internal table. It gives you the line type

(which columns the internal table will have), the access type (whether it will be

a standard, sorted, or hashed internal table), and the information about the key.

Database objects such as tables, indexes, databases views, and maintenance views

are defined in the ABAP Dictionary. An ABAP Dictionary table defined in the ABAP

Dictionary automatically creates a database table in the underlying database using

the structure defined in the ABAP Dictionary when the table definition is acti-

vated. Changes in the definition of the table, view, or index are automatically

made to the underlying database. Indexes are defined to speed up database access

to the table. An index created in an ABAP Dictionary table also creates an index for

the underlying database table.

The ABAP Dictionary provides a number of services for application development.

You can create lock objects in the ABAP Dictionary; the function modules to set

and release locks are automatically generated in the system upon activation of the

lock object. You use the function modules to lock the table or the table records if

the user intends to change a record and does not want anyone to change it at the

same time. You can also use lock objects to apply the read lock, where you are just

reading the data but want to ensure that no one else changes the data while you

are using it. Similarly, the ABAP Dictionary provides you with the option to create

search helps that can be linked to the screen fields to help the user search for appli-

cation data in the SAP system. The ABAP Dictionary also provides you with ser-

vices for input checks against the user input. The valid values for the table field are

defined via the check table or the value range for the domain of the data element.

Refer to Chapter 19 for more detail on this topic. Figure 10.1 displays the initial
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 10 307
screen of the ABAP Dictionary tool, which is used to create the ABAP Dictionary

objects.

Figure 10.1 ABAP Dictionary Tool

In summary, you can use the ABAP Dictionary tool to create or update the defini-

tion of SAP tables; views; data types, including data elements, structures, and table

types; domains; search helps; lock objects; and type groups. We discuss each of

these ABAP Dictionary objects and services in detail in the following sections.

Basic and Complex Data Types

Global data types are defined in the ABAP Dictionary. Data types defined in the

ABAP Dictionary can be referenced in an ABAP program with the TYPE addition for

the corresponding data object definition. You can also refer to the data types

defined in the ABAP Dictionary for the parameters of function modules or the

methods interface (see also Chapter 6).

Data types created in the ABAP Dictionary can be used by more than one ABAP

Dictionary object such as a table, structure, or table type, as well as in ABAP pro-

grams, screens, function module interfaces, and so on. Data types can be main-

tained centrally, and accordingly, all of the programs or the relevant objects using

the data type are adjusted during runtime if you make any changes in the data

type in the ABAP Dictionary. You can enter semantic information such as the field

labels and documentation details for the type in the data type definition in the

ABAP Dictionary.

Chapter 10 ABAP Dictionary308
There are three basic data types in the ABAP Dictionary: the data elements, struc-

ture, and table types, briefly mentioned earlier. We discuss these types in detail in

this section, but first, we need to discuss and understand the concept of a domain.

Domains

A domain is an ABAP Dictionary object that is used to describe the technical attri-

butes of a data element. Domains cannot be used directly as a type for data objects

in the program. Domains can be assigned to any number of data elements, and

any changes in the technical attributes of the domain will automatically be applied

to all of the data elements in which it is being used.

A domain can be used by several data elements because the technical attribute of

the data element can be the same, but it can have different meanings. An example

of a field with the same domain would be the data elements S_FROM_CIT and S_TO_

CITY in the table SPFLI. Both of the data elements use the domain S_CITY because

they are both city codes, but they have different meanings and hence the two data

elements. Thus, we define the domain and can use it for multiple data element

definitions instead of assigning a type and length directly to the data element.

Figure 10.2 and Figure 10.3 display the use of domains for the definition of data ele-

ments. Both of the data elements use the same domain for the reason explained

previously.

Figure 10.2 Data Element Definition for Departure City
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 10 309
Figure 10.3 Data Element Definition for Arrival City

Domains have the following technical attributes:

� Domain formats

� Domain output properties

With the domain format, you define the format for the domain. The input for the

format specification is the data type, the number of characters (which is depen-

dent on the data type), and the number of decimal places if the data type is a

numeric data type. You can only use predefined ABAP Dictionary data types for a

domain definition.

The ABAP Dictionary has 24 predefined data types. ABAP Dictionary data types are

mapped to the ABAP runtime data types that you can use to define your data

objects, such as type I, type C, and so on. Table 10.1 lists the valid ABAP Dictionary

data types, and Table 10.2 shows the mapping of the ABAP Dictionary data types

and the ABAP runtime data types.

Data Type Description

ACCP Posting period. The length is set to six places for this data type. The format is

YYYYMM. In input and output, a point is inserted between the year and

month, so the template of this data type has the form YYYY.MM.

CHAR Character string. Fields of type CHAR can have a maximum length of 255 in

tables.

CLNT Client fields always have three CHAR places.

Table 10.1 ABAP Dictionary Predefined Data Types

Chapter 10 ABAP Dictionary310
CUKY Currency key. Fields of this type are referenced by fields of type CURR. The

length is set to five places for this data type.

CURR Currency field. Equivalent to an amount field DEC. A field of this type must

refer to a field of type CUKY (reference field). The maximum length for this

data type is 31 places.

DATS Date. The length is set to 8 places for this data type. The output template can

be defined with the user profile.

DEC Counter or amount field with decimal point, sign, and commas separating

thousands. A DEC field has a maximum length of 31 places.

FLTP Floating point number. The length (including decimal places) is set to 16

places for this data type.

INT1 1-byte integer between 0 and 255. The length is set to three places for this

data type.

INT2 2-byte integer between –32767 and 32767. Fields of this type should only be

used for length fields. These long fields are positioned immediately in front

of a long field (type LCHR, LRAW). With INSERT or UPDATE on the long field,

the database interface enters the length that was actually used in the length

field. The length is set to five places for this data type.

INT8 8-byte integer introduced in NetWeaver 7.50. This corresponds to

the predefined ABAP data type int8 with the value range between

-9,223,372,036,854,775,808 to +9,223,372,036,854,775,807.

INT4 4-byte integer between –2147483647 and 2147483647. The length is set to 10

places for this data type.

LANG Language key. Has its own field format for special functions. This data type

always has a length of one. The language key is displayed at the user inter-

face with two places but is stored with only one place in the database. The

conversion exit ISOLA converts the display at the user interface for the data-

base and vice versa. This conversion exit is automatically allocated to a

domain with data type LANG at activation.

LCHR Character string of any length, but it has to be declared with a minimum of

256 characters. Fields of this type must be located at the end of transparent

tables (in each table there can be only one such field) and must be preceded

by a length field of type INT2. If there is an INSERT or UPDATE in ABAP pro-

grams, this length field must be filled with the length actually required. If the

length field is not filled correctly, this may lead to a data loss in the LCHR

field. A field of this type cannot be used in the WHERE condition of a SELECT

statement.

Data Type Description

Table 10.1 ABAP Dictionary Predefined Data Types (Cont.)
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 10 311
LRAW Uninterpreted byte string of any length, but it has to be declared with a min-

imum length of 256. Fields of this type must be located at the end of trans-

parent tables (in each table there can be only one such field) and must be

preceded by a length field of type INT2. If there is an INSERT or UPDATE in

ABAP programs, this length field must be filled with the length actually

required. If the length field is not filled correctly, this may lead to a data loss

in the LRAW field. A field of this type cannot be used in the WHERE condition of

a SELECT statement.

NUMC Long character field in which only numbers can be entered. The length of this

field is limited to a maximum of 255 places.

PREC Accuracy of a QUAN field. The length is set to two places for this data type.

QUAN Quantity. Equivalent to an amount field DEC. A field of this type must always

refer to a units field with UNIT format (reference field). The maximum length

for this data type is 31 places.

RAW Uninterpreted byte string. Fields of type RAW can have a maximum length of

255 in tables. If longer raw fields are required in tables, you should select data

type LRAW.

RAWSTRING Uninterpreted byte string of variable length. In the ABAP Dictionary, a length

can be specified for this type (at least 256 characters). This data type can be

used only in types (data elements, structures, table types) and domains. You

can store binary data of type RAWSTRING in the database. However, there are

restrictions; for a description of them, refer to the documentation of the

ABAP statement STRING. In ABAP, this type is implemented as a reference to

a storage area of variable size. As the default for the output length, 132 char-

acters are proposed. You cannot attach search helps to components of this

type.

STRING Character string with variable length. This data type can only be used in

types (data elements, structures, table types) and domains. In the ABAP Dic-

tionary, a length can be specified for this type (at least 256 characters). It can

be used in database tables, but only with restrictions. For a description of

these, refer to the documentation of the ABAP statement STRING. In ABAP,

this type is implemented as a reference to a storage area of variable size. As

the default for the output length, 132 characters are proposed. You cannot

attach search helps to components of this type.

Data Type Description

Table 10.1 ABAP Dictionary Predefined Data Types (Cont.)

Chapter 10 ABAP Dictionary312
SSTRING Short character string with variable length. In the ABAP Dictionary, the num-

ber of characters can be specified for this type (1–255). This data type can be

used only in types (data elements, structures, table types) and domains. It

can be used in database tables; however, to do so refer to the documentation

of the ABAP statement STRING. In ABAP, this type is implemented as a refer-

ence to a storage area of variable size. String fields of this type can be used in

indexes and in the WHERE condition of a SELECT statement. You cannot use

them in table keys. The maximum of this data type has been increased from

255 to 1333 in release 7.0 EHP 2.

TIMS Time. The length is set to six places for this data type. The format is HHMMSS.

The template for input and output has the form HH.MM.SS.

UNIT Unit. Fields of this type are referenced by fields of type QUAN. The length of

this data type is set to two or three places.

VARC Character field of variable length. Creation of new fields of this data type is

not supported as of release 3.0. However, existing fields with this data type

can still be used. A field of this type cannot be used in the WHERE condition of

a SELECT statement.

DF16_DEC ABAP Dictionary data type introduced in release 7.0 EHP 2; corresponds to

ABAP type decfloat16. It is a decimal floating point number stored in

Binary Coded Decimals (BCD) format, and the permitted length of DF16_DEC

is 1–15 digits.

DF16_RAW ABAP Dictionary data type introduced in release 7.0 EHP 2; corresponds to

ABAP type decfloat16. This is a decimal floating point number stored in

binary format, and the allowed length is 16 digits.

DF15_SCL ABAP Dictionary data type introduced in release 7.0 EHP 2; corresponds to

ABAP type decfloat16. This is a decimal floating point number stored in

binary format with subsequent scaling, and the data type length is 16 digits.

DF34_DEC Similar to DF16_DEC, this was introduced in release 7.0 EHP 2; corresponds to

the ABAP type decfloat34. This is a decimal floating point number stored in

BCD format, and its allowed length is between 1 and 31 digits.

DF34_RAW A floating point number stored in binary format. The allowed length is 34

digits. This ABAP Dictionary data type is also introduced in release 7.0 EHP 2

and corresponds to ABAP type decfloat34.

DF34_SCL A new ABAP Dictionary data type introduced in release 7.0 EHP 2; corre-

sponds to the ABAP type decfloat34. This is a decimal floating point num-

ber stored in binary format with subsequent scaling. The allowed length is 34

digits.

Data Type Description

Table 10.1 ABAP Dictionary Predefined Data Types (Cont.)
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 10 313
You specify the maximum field length in the domain output properties, which

includes the editing characters such as commas and periods for inputting and out-

putting values. The output length is populated automatically once you enter the

data type, and the number of characters and decimal places has been specified, but

it can be overwritten. The output format has an effect on the screen and selection

screen. The specification from this area is used when the data element linked to

ABAP Dictionary Type ABAP Type

ACCP N(6)

CHAR n C(n)

CLNT C(3)

CUKY C(5)

CURR n,m P((n+1)/2) DECIMAL m

DEC n,m P((n+1)/2) DECIMAL m

DATS D(8)

FLTP F(8)

INT1 X(1)

INT2 X(2)

INT4 X(4)

LANG C(1)

NUMC n N(n)

PREC X(2)

QUAN n,m P((n+1)/2) DECIMAL m

RAW n X(n)

TIMS T(6)

UNIT C(n)

VARC n C(n)

LRAW X(n)

LCHR C(n)

STRING STRING

RAWSTRING XSTRING

Table 10.2 Mapping of ABAP Dictionary and ABAP Runtime Data Types

Chapter 10 ABAP Dictionary314
this domain is used to describe the screen field, but the output characteristic can

be modified in the Screen Painter.

You can also specify a conversion routine for the domain. The conversion routine

is used to convert the contents of a screen field from the display format to SAP

internal format for data storage and vice versa. The conversion routine for the

domain is identified as a five-character name, and it generates two function mod-

ules for the conversion routine. The following function modules would be gener-

ated for the conversion routine XXXXX:

� The CONVERSION_EXIT_XXXXX_INPUT converts the display format to the SAP

internal format.

� The CONVERSION_EXIT_XXXXX_OUTPUT converts the SAP internal format to the

display format.

For the numeric data types such as DEC, FLTP, QUAN, and CURR, the checkbox for the

+/– sign is ready for input. If the checkbox is selected, then the first character of the

field is reserved for the +/– sign, and the output length should be increased by one.

For the character data type, you have the option to select the Lower Case checkbox

to allow the storage and display of lowercase characters. If this checkbox is not

selected, the data is always stored and displayed as uppercase. Figure 10.4 displays

the technical attributes for the domain definition.

Figure 10.4 Domain Definition
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 10 315
You can also define the valid values for the domain. Although the type of the

domain will dictate which values are valid, you can restrict this further on the

Value Range tab for the domain. The domain can have a single fixed value, value

ranges, or a value table (see Chapter 19 for more detail on this topic). Domains are

assigned to the data element, and the data element is assigned to fields of a table,

structure, or view. Any table or structure field that uses this data element can have

the valid value defined for the domain. The value range definition is not manda-

tory and hence can be left blank (see Figure 10.5).

Figure 10.5 Value Range Definition for a Domain

Data Elements

Data elements provide a complete description of a field with both semantic and

technical information. Data elements can be used in ABAP programs to define data

objects by using the TYPE addition for the data object declaration (see Figure 10.6

for the data element MATNR definition).

Chapter 10 ABAP Dictionary316
Figure 10.6 Data Type Definition for a Data Element

You can use data elements to define a data object (i.e., variable) in an ABAP pro-

gram. The syntax to define a data object in an ABAP program is as follows:

DATA: wa_matnr TYPE matnr.

You also use data elements to define view fields, structure components, or the row

type of a table type. To create data elements in the ABAP Dictionary, you have to

define the data type for the data element. The data type for the data element could

be an elementary data type or a reference data type. For elementary data types,

you have the option to assign a domain or use a predefined ABAP Dictionary data

type directly (SAP recommends using a domain where possible), whereas for a ref-

erence data type, you can assign another data element.

You should maintain the field labels for data elements. The field labels are auto-

matically available for display with any screen field that uses the data element, and

this applies to selection screens as well. You can also translate field labels into

other languages. Figure 10.7 shows the field label maintenance for the data ele-

ment.

You can define additional characteristics for the data element, such as search

helps, parameter IDs, and the English default name. The additional characteristic

can be maintained on the Further Characteristics tab of the data element mainte-

nance screen (see Figure 10.8).
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 10 317
Figure 10.7 Field Label Description for a Data Element

Figure 10.8 Additional Characteristics for the Data Element Definition

� The Search Help ((F4) value help) can be used to provide input help for a screen

field based on the data element (see Chapter 19 for more details on this topic).

� The Parameter ID is used to store (SET) the screen field value in memory if the

parameter ID is defined for the screen field. Similarly, the parameter ID is used

to get the input field value from memory by using the GET parameter state-

ment. You can also set the screen field attribute in Screen Painter to automati-

cally read the value from memory without using the GET parameter statement.

The parameter ID value is available only if it has been set in an application and

Chapter 10 ABAP Dictionary318
is available in the memory. The parameter ID holds the value per session and

per user and is not available once you log off.

� The Default Component Name is used if this data element is used to describe

fields in a BAPI structure for a BAPI definition.

Structures

Structures consist of sequences of components. The components of the structure

can be a sequence of elementary fields, other structures, or table types. Hence, you

can define a flat, nested, or deep structure in the ABAP Dictionary. The compo-

nents of the structure can have data elements assigned to them or defined using

the predefined ABAP Dictionary data types directly. Structures can also be used in

table definitions or table type definitions or for screen design. You can only use

flat structures inside ABAP Dictionary table definitions. Data elements, structures,

and table types belong to the same namespace, and hence a data element, struc-

ture, or table type cannot have same name, even though they are essentially differ-

ent things.

Table Types

Table types define the structure and the technical attributes of an internal table.

You can refer to the ABAP Dictionary table types in an ABAP program to define an

internal table with the following statement (shown here for the mara_tab table

type definition):

DATA: itab TYPE mara_tab.

You define the line type, access mode, and key for the table type in the ABAP Dic-

tionary.

� Line type

The line type defines the structure and the data type of the internal table (that

is, columns).

� Access mode

The access mode defines how you want to access the data in the internal table.

The possible values for the access modes are standard table, sorted table, hashed

table, index table, and not specified. Refer to Chapter 7 for more details on inter-

nal tables.

� Key

You can specify the key for the internal table. The key definition is mandatory
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 10 319
for the hashed table, whereas for the standard and sorted tables it’s optional.

The category defines whether the key is unique, non-unique, or not specified.

The key category for hashed tables must be unique.

Figure 10.9, Figure 10.10, and Figure 10.11 display the screens for table type defini-

tions.

Figure 10.9 Line Type Definition for a Table Type

Figure 10.10 Access Mode for a Table Type Definition

Chapter 10 ABAP Dictionary320
Figure 10.11 Key Definition for a Table Type

Transparent Tables

Tables are defined in the ABAP Dictionary independently of the underlying data-

base. You define tables in the ABAP Dictionary, and the database table is created

upon activation of the table definition in the SAP system. The database table is cre-

ated based on the table definition in the ABAP Dictionary, so the database table has

the same name as the ABAP Dictionary table, and the field names are also the same

(although not necessarily in the same order). You can create a table from the

Repository Browser in Transaction SE80 or Transaction SE11.

The following are the required settings for a table definition in the ABAP Dictio-

nary:

� Delivery and maintenance

You need to specify the delivery class for the table. It can be selected from a

dropdown box. You also need to specify the Data Browser/Table View mainte-

nance for the table. The valid values can be selected from a dropdown list as

well. For the options Display/Maintenance Allowed with Restriction and Dis-

play/Maintenance Allowed, you have the option to generate the table mainte-

nance dialog. The Display/Maintenance Allowed option also allows table

maintenance and display via Transaction SM30.

� Table fields

You must define whether the field name is a key field or not and define the field

type, field length, decimal places, and short text for the table. The field name
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 10 321
should be unique within the table. The field name can be a maximum of 16 char-

acters long and can contain letters, digits, and underscores. The key flag for the

field defines whether the field belongs to the table key.

The table can have one or more key fields. The key fields should be unique and

identify the record in the table. The fields of the table are either assigned to a

data element or mapped to a predefined data type. The field length, number of

decimal places, and the field text are automatically derived from the data ele-

ment/domain if the table field is assigned to a data element. You have to define

the technical attributes and short text for the table field if you use a predefined

ABAP Dictionary data type for the table field definition. You can also include

ABAP Dictionary structures for table field definition, but you have to define the

individual key field of the table. Figure 10.12 displays the use of the include

structure to define an ABAP Dictionary table.

Figure 10.12 Table Definition with Include Structure

Attaching a search help to the table field itself is only possible if the table field is

assigned to a data element. Otherwise, if you are using a predefined ABAP Dictio-

nary type, search help definition for the table field is not possible. Reference type

Chapter 10 ABAP Dictionary322
specification for the CURR and QUAN data type fields is required. You must specify

the reference table for the CURR and QUAN data type field. A reference table should

have the CUKY (currency key) data type field for the CURR data type field and the

UNIT (unit of measure) data type field for the QUAN data type field. A currency key is

required because a price of 100 means nothing until you know whether it is $100

or £100. Figure 10.13 displays the reference type definition for a CURR data type

field.

Figure 10.13 Reference Table and Field Assignment for Net Price Field

� Foreign key

You define the foreign key relationship between the tables in the ABAP Dictio-

nary. Using the foreign key, you can create a value check for the table field. You

can define the foreign key for the table by selecting the Foreign Keys icon (see

Figure 10.14). Refer to Chapter 19 for details on this topic.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 10 323
Figure 10.14 Table Field Definition

� Technical settings

You must maintain the technical settings when you create an ABAP Dictionary

table. Some of the technical settings are mandatory. The technical settings are

used to optimize the data storage and access for the table. You need to define

the data class, size category, and setting regarding buffering.

– The data class defines the physical area of the database (tablespace) in which

the table should be created. The most important data classes defined in the

ABAP Dictionary are APPL0 for master data that is not frequently modified

compared to the transaction data, APPL1 for transaction data, and APPL3 for

the organization data. The other two data classes, USR and USR1, are provided

for customers and should be used by the customer. A special storage area

must be allocated for the customer-specific data classes.

– The size category defines the size of the extents created for the table and the

expected space for the database. You can choose a size from 0 to 4, and each

category is assigned a fixed memory size in the database. When you create a

Chapter 10 ABAP Dictionary324
table, initial space is saved for it in the database. If more space is required

later as a result of data that has been entered, the storage is increased in

accordance with the size category selected.

– Buffering settings define how the table should be buffered. Table buffering

improves the performance of the database access. The contents of the table

are buffered on the application server and can be accessed from the applica-

tion server instead of the database server. The buffered table is invalidated if

the entries in the database table change.

You can select the Buffering not Permitted option if the application data is being

changed too frequently. In this case, the most recent data is available for the

application, and it will always be fetched from the database.

You can select the Buffering Activated option if the data is not being changed

frequently. You have to specify the buffering type if you select the Buffering

Activated option.

You also have the option to specify Buffering Permitted but not Activated. In this

case buffering is allowed technically but has been deactivated because perfor-

mance behavior is not known in the customer system.

– The buffering type determines which records are to be buffered on the appli-

cation server. Full Buffering loads all of the records of the table into the buffer

even if only one record of the table is accessed. The Single-record Buffer loads

only the record being accessed into the buffer. Generic Buffering loads the

left-justified generic key record into the buffer.

– You also have the option to specify whether any changes to the table entries

should be logged. If Log Data Changes is selected, then any changes in the

table record will be logged in the log table DBTABPRT, or the list of changes can

be viewed via Transaction SCU3. Switching this may slow down any update to

the table because the updates need to be logged as well.

See Figure 10.15 for technical settings for the table.

� Index

The primary index of the table is automatically created based on the table key.

An index can be considered a copy of the table that has been reduced to certain

fields. The copy is always in sorted order and provides faster access to the data

record in the table. The index also contains a pointer to the corresponding

record in the actual database table. You can also create multiple secondary

indexes for the table. A secondary index may be necessary if the table is fre-

quently accessed in a way that does not take advantage of the primary index
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 10 325
access. In such a case, you can create a secondary index with the fields other

than the key field of the table.

You should not create too many indexes for the table because it may slow down

the database update. Each index has to be readjusted any time the database con-

tent changes, so we do not recommend creating too many indexes. Figure 10.16

displays the multiple secondary index for the table MARA.

Figure 10.15 Technical Setting for the ABAP Dictionary Table

Figure 10.16 Multiple Secondary Index for the Table MARA

Chapter 10 ABAP Dictionary326
Tip

You should not create too many indexes for the table because it may slow down

the database update. For any changes in the database content, each of the

indexes has to be readjusted, which may affect the performance adversely.

Global Temporary Table

The ABAP Dictionary Global Temporary Table (GTT) category of database table has

been introduced in NetWeaver 5.0. It is a special transparent table to store tempo-

rary data during database logical unit of work (LUW). The database can be accessed

by only one consumer with the database LUW. The GTT is empty at the start of

LUW and has to be cleared explicitly at the end of database LUW. The database sys-

tem provides native support by defining the data within the GTT as transaction-

specific and hence the data is deleted automatically at the end of the database

LUW.

If the GTT is filled by a modifying Open SQL statement (INSERT, UPDATE, MODIFY,

and DELETE), then the table content should be cleared before the end of the data-

base LUW using DELETE FROM without a WHERE clause or an explicit database com-

mit or database rollback. If the GTT filled by the Open SQL statement is not cleared

explicitly before the implicit database commit, then the runtime error COMMIT_

GTT_ERROR is raised.

GTT is defined in the ABAP Dictionary using Transaction SE11. GTT is defined simi-

larly to the transparent table with the following required technical settings for the

table definition.

� Delivery and maintenance

You need to specify the delivery class for the GTT. It can be selected from a drop-

down box. The delivery class for the GTT should be L.

� Technical settings

You must maintain the technical settings when you create an ABAP Dictionary

table. Some of the technical settings are mandatory.

– The data class is ignored.

– The size category is ignored.

– Table Buffering Not Allowed is on.

– Logging is off.

– Table type should be row store and should be used only for HANA databases.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 10 327
Replacement objects cannot be used for the GTT definition and the number of

keys for GTT is limited to 15. At least one table field must be flagged as a key field.

Replacement Objects

The replacement object was introduced in NetWeaver 5.0 and is mainly intended

for aggregate tables. A CDS view can be assigned as a replacement object to a trans-

parent database table or a classical database view.

The replacement object cannot be defined for pooled tables, cluster tables, projec-

tion views, maintenance views, and help views.

In the customer system, the replacement object can be defined for self-defined

database views only and cannot be defined for database tables. The replacement

object cannot be defined for GTT.

The following requirements should be fulfilled for the assignment of a CDS view to

a transparent table or a classical database view.

� The structure type defined by the CDS view should match the structure of the

database table or classical view.

� The number of the components must match.

� It must be possible to assign components of the CDS view to each component of

the database table or classical database view.

� The component name of the database table should be identical to the compo-

nent name of the CDS view, except for the client column, which is assigned

regardless of its name.

� The built-in data type, length, and number of decimal places must match all the

components.

� The CDS view cannot have an input parameter.

� Table buffering must be switched off for the database view for which the

replacement object is defined.

If the CDS view assigned as a replacement object is changed and the above prereq-

uisites are not fulfilled, then the runtime error DBSQL_REDIRECT_INCONSISTENCY

occurs when the Open SQL read operation is performed on the database table or

on the database view.

Chapter 10 ABAP Dictionary328
In the following cases, the replacement object is accessed instead of a transparent

database table or a classical database view.

� When the read operation is performed on the database table or database view

using Open SQL, wherein the data source of the SELECT statement is the data-

base table or view for which the replacement object is assigned. This also applies

to subqueries in any Open SQL statement and the OPEN CURSER and FETCH state-

ments.

� When the foreign key relationship is checked for the ABAP Dynpro screen and

WebDynpro.

In the following scenario, the access is performed on the database table or classical

table instead of on replacement objects.

� Write in Open SQL using the INSERT, UPDATE, MODIFY, and DELETE keywords.

� When the update is performed on a database table or view using a SELECT state-

ment with the addition SINGLE FOR UPDATE.

� When it’s used in other database object such as a data source in database view.

� Access using IMPORT FROM DATABASE or EXPORT TO DATABASE.

� Access using Native SQL such as EXEC SQL.

The following are the steps to find the replacement object for a database table or

database view:

1. Open the database table for which you want to find the replacement object

using Transaction SE11. This displays the ABAP Dictionary table screen.

2. Go to the menu path Extras • Proxy Objects. The Display Proxy Object dialog

screen is opened.

3. The Replacement Object field will have the replacement object if it is defined for

the table or view.

Search Helps

Search helps are an ABAP Dictionary service used to display a list of possible values

for screen fields. The value selected by the user from the selection list is copied to

the screen field. Search helps are one form of value help ((F4) help) for the screen

fields.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 10 329
Not all screen fields have input help. Fields that do can be recognized by the Input

help button on the right of the screen field. The Input help button appears on the

screen as soon as you position the cursor on the screen field. Search helps for a

screen field can be started by pressing (F4) or by clicking on the Input help key next

to the screen field.

Normally, search helps are assigned to a data element, and the search help is avail-

able to any field that refers to the data element. The search help can also be

attached directly to a field of a table or a structure and to a check table. The defini-

tion of the attachment is similar to the foreign key. You can also assign search

helps directly to a screen field as one of the field attributes in the Screen Painter,

although we do not recommend this.

The following types of search helps can be defined and are created with the ABAP

Dictionary tool:

� Elementary search helps

� Collective search helps

� Append search helps

Elementary Search Helps

Elementary search helps are basic search helps and define the search path for a

field. They must define from where the data for the search help would be read. This

is determined by the Selection method input field.

The selection method can be a transparent table, database view, projection view, or

help view. If the table entered for the selection method has a text table, then the

text table is automatically populated to the corresponding field, and its fields are

also available for the input help and Search help parameter selection, so users can

use the field value description when searching. The possible values for the hit list

are determined at runtime by the database selection. If the data for the hit list

comes from more than one table, then you must define a database view for the

table and enter the view for the Selection method (see Figure 10.17).

Chapter 10 ABAP Dictionary330
Figure 10.17 Elementary Search Help Definition

You must specify search help parameters for a search help. The parameters are

used for the value selection and for the hit list display. The parameters for the

search help correspond to the fields of the table or the view entered for the Selec-

tion method.

� The interface of the search help is defined via importing (IMP) and exporting

(EXP) parameters. You must specify the interface for the search help in order for

it to exchange the data from the screen template to the selection method and

from the selection method to the screen field. The importing parameters are

required to pass the values to the selection method, and the exporting parame-

ters are required to return the values to the input screen fields. You select the

IMP flag if the parameter is the importing parameter and the EXP flag if the

parameter is an exporting parameter. Search help parameters can be importing

as well as exporting.

� The dialog for the input help is defined with the fields LPos, SPos, and SDis. The

parameter position in the hit list is defined by LPos, and the parameter position

on the dialog screen is defined by SPos. The parameter is not displayed if the

value of LPos or SPos is initial or 0. You set the SDis flag for the parameter if the

search help parameter is for the value selection only.

� The dialog type defines whether the dialog box for value selection is to be dis-

played or not. You select Select values immediately for the Dialog type if you do
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 10 331
not want a dialog screen for restricting the search value. This option is meaning-

ful if the list contains only a few entries. You can select the option Dialog

depending on number of values. The search result in this case will be displayed

immediately if the number of entries is less than 100; otherwise, a dialog screen

will be displayed to restrict the number search result. You also have the option

to select Complex dialog with value restriction for the Dialog type. In this case

the dialog screen for value restriction will be displayed for search list display.

Collective Search Helps

A collective search help combines several elementary search helps. Collective

search helps provide several alternative search paths for possible entries. The col-

lective search help exchanges data with the screen with the Export and Import

interface parameter. Collective search helps can be attached to fields, check tables,

or data elements just like the elementary search help. Only one search help can be

attached to a field, table, or data element, but several search paths are available

with collective search help. Each elementary search help is represented to the user

by a separate tab page.

To define the collective search help, you include all of the elementary search helps

and define the search help parameters for the collective search help. Thereafter,

you assign the elementary search help parameter to the collective search help

parameters (see Figure 10.18 and Figure 10.19).

Figure 10.18 Collective Search Help Parameter Definition

Chapter 10 ABAP Dictionary332
Figure 10.19 Collective Search Help Parameter Assignment

Append Search Helps

Append search helps can be used to enhance collective search helps delivered by

SAP for customer-specific requirements without modification. You have to define

your own custom elementary search help and then attach it to the append search

help. You can append a search help via the menu path Goto • Append Search Help.

Lock Objects

Lock objects are required to protect the consistency of the data if several users or

programs try to modify or access the same data at the same time. Within the SAP

system you can control the access to the same data using the logical lock mecha-

nism. A typical example would be that two users are trying to update the material

master at the same time, and you want to ensure that the data is consistent. In the

SAP system you lock the material master record so that no other user can change

the data while you are working on the data. You release the lock once you are done

with your changes.

You set and release locks by calling function modules for lock objects in your pro-

gram. The lock objects created in the ABAP Dictionary are not the database lock.

Instead they are a logical lock table that the SAP application uses. To lock records

in your application, you have to create a lock object (for example, if you are updat-

ing a table) or use an existing SAP lock object. The name of the lock object must

start with EZ or EY if you are creating your own. The function modules for the lock

object are automatically generated when you create and activate the lock object in

the ABAP Dictionary.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 10 333
The two function modules generated during the activation of the lock object are

ENQUEUE_<lock_object> and DEQUEUE_<lock_object>. The generated function

modules are automatically assigned to a function group. You should never change

the function module or the function group assignment. The function group or the

module for the lock object should never be transported on their own. Instead you

transport the lock object, and the function modules are generated in the target

system during the activation of the lock objects. You call the ENQUEUE_<lock_

object> function module to lock the table record or table. The key of the record

you want to lock has to be passed to the function module to lock the record. You

call the DEQUEUE_<lock_object> function module to release the lock on the table

record. The lock mode used to lock the record can also be passed to the function

module, although all lock objects have a default lock mode.

The lock objects are defined for the tables in which data records should be locked

in the application. Lock objects can be defined for a single table or for a set of logi-

cally related tables. Here, you have to define a primary table and any number of

secondary tables using foreign key relationships. The argument of the lock object

consists of the key fields of the table. The lock argument fields become some of the

input parameters for the lock object function modules to lock or unlock the table

records. The lock argument defines the key for the table row to be locked. Lock

objects can also lock a logical object, which can consist of a header record and the

related detail of the header record in the secondary table. Figure 10.20 and Figure

10.21 show the screens for the lock object definition. To define a lock object, you

have to define the lock table, the lock mode as displayed in Figure 10.20, and the

lock parameters as displayed in Figure 10.21.

Figure 10.20 Table Assignment for the Lock Object

Chapter 10 ABAP Dictionary334
Figure 10.21 Lock Parameter Assignment for the Lock Object

The lock mode is also an input parameter for the function modules of the lock

object, and it defines how other users or applications can access the locked record.

You can assign separate lock modes for individual tables in the lock object. Table

10.3 displays the lock modes and their meanings.

Locked records can be viewed via Transaction SM12. You can also manually delete

the locked record from this transaction if the SAP dispatcher or network connec-

tion fails and the dispatcher is unable to delete the lock entries (see Chapter 8 for

details regarding the update strategies).

Type of Lock Lock Mode Meaning

Shared lock/read lock S (shared) More than one application can set a shared lock

on the same record. An exclusive lock cannot be

set for a record with an existing shared lock.

Exclusive lock/

write lock

E (exclusive) Exclusive locks protect the lock object against all

types of locks from any application. Only the

application that locked the object can reset the

lock. Locked data can be edited or displayed by a

single user.

Exclusive and

non-cumulative

X (exclusive

non-cumula-

tive)

Exclusive locks can be requested several times

within the same application and are processed

successfully. In contrast, exclusive but non-

cumulative locks can be applied only once

within an application; all other lock requests are

rejected.

Table 10.3 Lock Modes for Lock Objects
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 10 335
View Types and Maintenance

Application data is usually stored across several database tables. By defining a

view, you can provide the means to access those tables as if they were one table. A

database view is derived by combining (JOIN) the data from one or more tables

and is based on an inner join. You can use a database view in an ABAP program for

data retrieval, that is, when you use the SELECT statement. You can mask one or

more fields from the base table to create a view or include only some entries from

the database tables that satisfy certain conditions.

The following are the steps to define a view:

1. Select the base tables for the view.

2. Define the join conditions to link the base tables of the view.

3. Select the fields of the base table to be used in the view.

4. You can also define a selection condition to restrict record selection in the view,

although we do not use this option often.

The join conditions for the view define how the records of the different tables are

related (that is, how you know which records in one table correspond to a record in

another table). The selection of the records from the view tables is restricted by the

join condition.

You can define a selection condition to filter the table records for the view. You can

define several selection conditions by using the logical operators AND and OR. Be

aware that this will restrict how many applications can use the view. This is similar

to the WHERE clause used in the SELECT statement to filter the record retrieval from

the table.

You pick fields from each of the tables that you want to include in the view. The set

of fields selected for the view is called the projection. The data to be selected for the

view is dependent on whether the view is implemented as an inner join or an outer

join. With the inner join, you get all of the records for which there is an entry for

the join condition in all tables included for the view. With the outer join, records

are also selected for which there is no entry in some of the tables included in the

view.

See Figure 10.22 and Figure 10.23 for inner and outer joins, respectively. The inner

join view as shown in Figure 10.22 contains all records from tables TAB1 and TAB2,

which satisfies the join condition (that is, TAB1-FIELD1 = TAB2-FIELD3). Similarly,

the outer join view as specified in Figure 10.23 contains all of the records from TAB1

and the records from TAB2 that satisfy the join condition, that is, TAB1-FIELD1 =

Chapter 10 ABAP Dictionary336
TAB2-FIELD3. All records in the left or first table will be included in the result set,

regardless of whether the other tables have a corresponding entry.

Figure 10.22 Inner Join View

Figure 10.23 Outer Join View

Database views implement an inner join and hence select records for which there

are entries in all of the tables included in the view. Help views and maintenance

views implement outer joins. You cannot select data from the maintenance view.

Field1

TAB1

Field2

490001 2009

490002 2009

490003 2009

Field1

Join Condition: TAB1-FIELD1 = TAB2-FIELD3

490001

490001

490002

490002

Field2

2009

2009

2009

2009

Field3

49001

49001

49002

49002

Field4

10

20

10

20

Field5

MAT1

MAT2

MAT3

MAT3

Field3

TAB2

Field4

490001 10

490001 20

490002 10

Field4

MAT1

MAT2

MAT3

490002 20 MAT3

Field1

TAB1

Field2

49001 2009

49002 2009

49003 2009

Field1

Outer Join Condition: TAB1-FIELD1 = TAB2-FIELD3

49001

49001

49002

49002

Field2

2009

2009

2009

2009

Field3

49001

49001

49002

49002

Field4

10

20

10

20

Field5

MAT1

MAT2

MAT3

MAT4

49003 2009

Field3

TAB2

Field4

490001 10

490001 20

490002 10

Field4

MAT1

MAT2

MAT3

490002 20 MAT4
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 10 337
If you want to use an outer join in your application, you have to program it your-

self.

The maintenance status of the view controls whether data records in the table can

be inserted or changed through the view. You have the option to specify Read only

maintenance status for the view. With this option you can only read data from the

view. If you select the Read and Change status, you can update or change the table

records through the view. Database views permit read-only access.

The following view types are possible in the ABAP Dictionary:

� Database view

Database views are automatically created in the underlying database when they

are activated. A database view should be created if you want to access logically

connected records from different tables simultaneously. Selection from the

database view is generally faster than selection from the individual tables using

a nested select. Database views can only contain transparent tables.

� Projection view

Projection views are used to mask the fields of a table. A projection view con-

tains exactly one table, and you cannot define the selection condition for the

projection view. A projection view does not create a corresponding object in the

underlying database like a database view. Data selection from the projection

view should be fast, owing to a smaller number of fields in the projection view.

Projection views can be created for pooled or cluster tables, as they can be

mapped to the required singular database table.

� Maintenance view

A maintenance view is implemented as an outer join, and all the tables included

in the maintenance view must be linked with a foreign key. The join conditions

of the maintenance view are always derived from the foreign keys. You cannot

enter the join condition for the maintenance view manually as you can for the

database view. Maintenance views allow an easy way to maintain complex

application objects.

Maintenance views, as their name suggests, allow you to maintain the data for

the application object together, and the data is automatically distributed to all

of the underlying database tables. The maintenance status determines whether

a change to the database tables is allowed through the maintenance view. The

maintenance view is a left outer join, so the first table included in the join is

important. All of the records of the first table are included in the maintenance

view.

Chapter 10 ABAP Dictionary338
� Help view

Help views can be used as a selection method for a search help. Help views are

implemented as an outer join, and all tables included in the help view should be

connected by foreign keys.

Generally, the selection method for the search help is a database view or table.

However, you have to use a help view as a selection method for a search help if a

view with an outer join is required for data selection.

Important Terminology

You should now know about various ABAP Dictionary objects and their functions.

You should also have a good understanding of search help and lock objects.

Search helps are ABAP Dictionary services used to display a list of possible values

(value help) for screen help and are generally associated with the data elements.

They can also be assigned to a dialog screen, in which case you would not have to

program value help for the screen field in the screen flow logic. Otherwise, you

would have to program for value help for the screen field if input help for the field

is required.

Similarly, lock objects are required to protect the consistency of the data if several

users or programs try to access and modify the same data at the same time. You

can control the access of the same data by two or more users by using the logical

lock mechanism. Two function modules, ENQUEUE_<lock_object> and DEQUEUE_

<lock_object>, are generated for each ABAP Dictionary lock object. You call the

ENQUEUE_<lock_object> function module to lock a table or a table record and the

DEQUEUE_<lock_object> function module to unlock a table or a table record.

Practice Questions

The following practice questions will help you evaluate your understanding of the

topic. The questions shown are similar in nature to those found on the certifica-

tion examination. Although none of these questions will be found on the exam

itself, they allow you to review your knowledge of the subject. Select the correct

answers and then check the completeness of your answers in the following solu-

tion section. Remember that you must select all correct answers and only correct

answers on the exam to receive credit for the question.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Practice Questions Chapter 10 339
1. A transparent table can include a deep structure.

� A. True

� B. False

2. ABAP data types can be used for a domain definition.

� A. True

� B. False

3. Which of the following statements are true? Select all that apply.

� A. A conversion routine can be assigned to a domain.

� B. A conversion routine can be assigned to a data element.

� C. You define the value range in the data element.

� D. You can enter documentation for the data element in the ABAP Dictionary.

4. (F1) help on the screen field displays the data element documentation.

� A. True

� B. False

5. Which of the following are true statements? Select all that apply.

� A. The technical attributes of the data element can be defined by a domain,

that is, the data type, the field length, and the number of decimal places.

� B. You can also select predefined data types to define the data type of the data

element.

� C. Reference data types can be used to define the data type of the data element.

� D. Field labels are defined for the domain.

6. You can define search helps and parameter IDs for a data element.

� A. True

� B. False

Chapter 10 ABAP Dictionary340
7. The line type for a table type can contain a flat, nested, or deep structure.

� A. True

� B. False

8. Which of the following are true statements? Select all that apply.

� A. Table fields can be assigned to a data element.

� B. Table fields can be assigned to an ABAP Dictionary data type directly.

� C. Search helps can be defined for a table field that is assigned to a predefined

data type.

� D. A reference table and field are required for fields with the data types QUAN

and CURR.

9. Which of the following statements regarding search helps are true? Select all

that apply.

� A. You can use a maintenance view for the search help selection method.

� B. You can use a database view for the search help selection method.

� C. Help views can also be used for the selection method for search help.

� D. You can use transparent tables for the search help selection method.

10. Which of the following regarding search helps is a true statement? Select all

that apply.

� A. The interface for the search help is defined by the IMP (import) and EXP

(export) flags of the search help parameter.

� B. The LPos parameter defines the position of the search help parameter in the

search hit list.

� C. The SPos parameter defines the position of the input field on the dialog

screen.

� D. The text table for the selection method is automatically populated if the

text table is attached to the database table being used as the selection method.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Practice Questions Chapter 10 341
11. Which of the following statements are true? Select all that apply.

� A. A database view is implemented as an inner join.

� B. A maintenance view is implemented as an outer join.

� C. A database view is implemented as an outer join.

� D. A maintenance view is implemented as an inner join.

12. Which of the following statements are true? Select all that apply.

� A. The tables included in the maintenance view should have foreign key rela-

tionships.

� B. The tables included in the help view should have foreign key relationships.

� C. Projection views can have more than one table included for the view defini-

tion.

� D. You cannot use a pooled or cluster table for a database view.

13. You can create projection views for pooled or cluster tables.

� A. True

� B. False

14. What is the allowed length of the ABAP Dictionary data type DF34_RAW?

� A. The allowed length is between 1 and 34 digits.

� B. The allowed length is between 1 and 31 digits.

� C. The allowed length is between 0 and 33 digits.

� D. The allowed length is 34 digits.

15. What is the allowed length of the ABAP Dictionary data type DF16_DEC?

� A. The allowed length is between 1 and 15 digits.

� B. The allowed length is 16 digits.

� C. The allowed length is between 0 and 16 digits.

� D. The allowed length is between 0 and 15 digits.

Chapter 10 ABAP Dictionary342
16. A replacement object can be defined for a pooled table.

� A. True

� B. False

17. One of the prerequisites for the replacement object is that the structure type

defined for the CDS view should match the structure of the database table.

� A. True

� B. False

18. The Global Temporary Table (GTT) is defined on the ABAP program.

� A. True

� B. False

Practice Question Answers and Explanations

1. Correct answer: B

Transparent tables can include flat structures only. A deep structure is not

allowed.

2. Correct answer: B

You can use ABAP Dictionary data types for the domain definition. ABAP data

types cannot be used for the domain definition.

3. Correct answers: A, D

A conversion routine can be assigned to the domain and cannot be assigned to

a data element. The value range is assigned to the domain during its definition

and not to the data element. However, the data element inherits the value

range if it’s assigned to a domain with a value range definition. You provide the

documentation for the data element during the definition.

4. Correct answer: A

(F1) help displays the data element documentation.

5. Correct answers: A, B, C

The technical attributes of the data element are defined by the domain if the

domain is used for the data type definition for the data element. The data type

for the data element can be a predefined ABAP Dictionary type or domain or a
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Practice Question Answers and Explanations Chapter 10 343
reference data type. Field labels are defined for the data element only and not

for the domain.

6. Correct answer: A

You can define a search help and parameter ID for the data element.

7. Correct answer: A

The line type for the ABAP Dictionary table type can be a complex structure. It

can be a flat, deep, or nested structure.

8. Correct answers: A, B, D

Table fields can be assigned to the data element or the predefined type directly.

Search helps cannot be defined for a table field assigned to the predefined data

types. Search helps can be defined for fields assigned to the data element. The

reference table and field are required for the table field assigned to data types

QUAN and CURR. The reference type field should be UNIT and CUKY.

9. Correct answers: B, C, D

The selection method for the search help can be a transparent table, database

view, or help view. You cannot have a maintenance view as a selection method

for the search help.

10. Correct answers: A, B, C, D

The interface for the search help is defined by the import and export parameter

of the search help parameter. LPos defines the position of the parameter on the

hit list, whereas SPos defines the position of the parameter on the input screen.

The text table is automatically assigned to the selection method if it is assigned

to the selected transparent table of the selection method.

11. Correct answers: A, B

A database view is implemented as an inner join, whereas a maintenance view

is implemented as an outer join.

12. Correct answers: A, B, D

Tables included in a maintenance view and help view should have a foreign key

relationship. You cannot use pooled and cluster tables for the database view.

Projection views can include only one table for the view definition and can

include pooled or cluster tables for the view definition.

13. Correct answer: A

A projection view can include pooled or cluster tables for the view definition.

14. Correct answer: D

The allowed length of the ABAP Dictionary data type DF34_RAW is 34 digits.

Chapter 10 ABAP Dictionary344
15. Correct answer: A

The allowed length of ABAP Dictionary data type DF16_DEC is between 1 and 15

digits.

16. Correct answer: B

The replacement object is defined for a transparent database table and a classi-

cal database view only. It cannot be defined for a pooled or cluster table.

17. Correct answer: A

The structure type defined by the CDS view should match the structure of the

database table or the classical database table for which you want to assign the

CDS view as the replacement object.

18. Correct answer: B

The GTT ID is defined in ABAP Dictionary using Transaction SE11 and the deliv-

ery class for the table is L.

Takeaway

You should now understand the various ABAP Dictionary objects and services.

You should be able to explain the concept of domains, data elements, table types,

structures, tables, indexes, and views. You should be able to distinguish between

different types of views supported by the SAP system and their uses.

You must also understand the lock object concept and its definition and the use of

search helps. It is important to know which type of object can be used for the selec-

tion method of the search helps. You should also know the difference between the

elementary search help and collective search help and the steps to create the

search help.

Lock objects are important for any application development, and you should be

able to create lock objects and use them in your application.

Refresher

You must understand ABAP Dictionary objects and the supported services; that is,

lock objects and search helps. You should be able to define domains, data ele-

ments, structures, table types, and transparent tables. You should know the sup-

ported data types for domain and data element definition and the concept of a

value table and value range and its use in the domain definitions. It is important to
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Takeaway Chapter 10 345
understand which ABAP Dictionary objects can be used in the ABAP program and

their scopes.

You also must understand the difference between outer joins and inner joins and

which type of join is implemented in different types of views.

Table 10.4 shows the key concepts of the ABAP Dictionary.

You should now be able to define ABAP Dictionary objects and use them in your

program or application. You should also know how to lock tables or the table

record within an application. Lastly, you should be able to define elementary

search helps and collective search helps, and know how to enhance a standard

search help. The knowledge of the ABAP Dictionary and its function will easily

allow you to pass this topic on the certification examination.

Key Concept Definition

Domain Domains are used to manage technical properties of the data

object centrally and cannot be used in the program directly. A

domain can use an ABAP Dictionary data type only for its defini-

tion.

Data elements A data element is a complete description of a field. Data ele-

ments provide (F1) help for the screen field and field label for

the screen.

ABAP Dictionary table Tables are defined in the ABAP Dictionary independently of the

underlying database. A physical table definition is created in the

database upon activation of the ABAP Dictionary table.

Table 10.4 Key Concepts Refresher

© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Chapter 11

Unicode

Techniques You’ll Master:

� Enforce Unicode checks (on a non-Unicode system)

� Explore the difference between byte-type and character-type

data objects

� Determine the fragment view of structures in Unicode

� Understand new additions to statements

� Learn about new relational operators

Chapter 11 Unicode348
In this chapter, you learn how to make your ABAP programs Unicode-compliant.

Unicode is intended to be a universal character set supporting every written script

used on Earth. Unicode attempts to connect a rune or glyph (a character’s visual

representation) with a character (a unit of phonetic or semantic meaning). Thus, a

single character that has different appearances has multiple runes; for example,

Arabic characters change appearance depending on their position in a word.

Note

Starting with Release 7.50, SAP NetWeaver Application Server for ABAP can only

run as a Unicode system. Systems with non-Unicode code pages are no longer

supported. Likewise, all ABAP programs must be Unicode programs and non-Uni-

code programs are no longer supported. The syntax check can now only run using

the rules from the Unicode check. The associated program attribute Unicode
Checks Active must always be set. Removal of the Unicode check setting in pro-

gram attributes will produce an error when you attempt to activate the program.

We cover how to enforce the Unicode checks even in a non-Unicode system. We

discuss the differences in most the statement changes regarding the Unicode

checks. Finally, we explain the Unicode fragment view and provide a brief explana-

tion of how it works.

Each of these topics is covered separately and is followed by practice questions and

answers.

Real-World Scenario

Your company put off switching from multiple code pages when it last

upgraded from SAP R/3 4.6C to SAP NetWeaver 6.40. Now it is forced to make

the switch: Beginning with SAP NetWeaver 7.0, SAP no longer supports a sys-

tem with either blended code pages or more than one code page and requires

a conversion to Unicode. You have been asked to identify issues of upgrading

your company’s SAP system from SAP NetWeaver 6.40 to SAP NetWeaver 7.0

and switching to Unicode (in other words, changing all character-based data

stored in the database from one code page to Unicode) as part of the upgrade

process.

It is your responsibility to identify which custom programs have issues that

need correcting prior to performing the upgrade. Once you have a list of pro-

grams and their problems, you must make changes to correct the issues.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Objectives of This Portion of the Test Chapter 11 349
To speed up the correction process owing to the expected number of pro-

grams that may be affected, you have also been asked to explain the process

and the types of program changes necessary to the entire development team

so all members can make changes and learn the rules and, in turn, produce

Unicode-compliant development.

Objectives of This Portion of the Test

The purpose of this portion of the certification examination is to verify that you

know how to make programs Unicode-compliant but also to understand, from a

programming perspective, the advantages of having a Unicode-compliant pro-

gram. This portion of the examination will test your knowledge of a number of

topics. The points you will need to understand for this section include:

� How to enforce Unicode checks prior to the actual switch to Unicode

� How to identify programs with issues that need to be corrected (in other words,

which programs will produce errors as a result of the stricter enforcement of

syntax checking of a Unicode system)

� Which ABAP statements behave differently as a result of byte-type versus char-

acter-type validations

� How the Unicode fragment view is used for assignment and conditional state-

ments

� New additions to existing statements to differentiate between byte-type and

character-type data

� New relational operations for byte-type objects

The certification examination gives minimal weight to this chapter compared to

all of the other topics in the examination. Therefore, this chapter is among those

with fewer questions related to the topic than most other chapters. We suspect the

reasoning for a minimal weighting is that the causes of errors produced during

code activation related to Unicode are situation-specific. You must solve the issue

before you can proceed with activation. From a practical test design point of view,

there are also only so many ways to ask about the difference between a character

and a byte, and it is still possible to have a single-byte code page system. Therefore,

although this information is important (and will help you produce more robust

programming), it is not mandatory in all environments—yet.

Chapter 11 Unicode350
Key Concepts Refresher

If you have developed on SAP releases 6.20 or later, you probably already know

much of the content in this chapter. Eventually, the expectation is that all SAP

implementations will be running Unicode-compliant systems.

As with many new abilities, SAP provides the tools (specifically, Transaction

UCCHECK and the program attribute for Unicode enforcement) and encourages

you to use them. Early acceptance of the tools and enforcement of the compliance

rules will make the eventual conversion run smoothly because you will be able to

focus on the data conversion knowing that the program’s behavior is already cor-

rect and properly tested. You need to understand the following to make your ABAP

programs Unicode-compliant:

� Byte-type data objects versus character-type data objects

� The fragment view of a structure

� File handling

� New additions to the ABAP language

� How to scan programs for errors

Unicode Compliance

Prior to release 6.10, SAP supported different codes for representing characters of

different fonts, such as the following:

� ASCII (American Standard Code for Information Interchange) encodes every

character with one byte. This means that a maximum of 256 characters can be

represented (strictly speaking, standard ASCII only encodes one character using

7 bits and can therefore only represent 128 characters). The extension to 8 bits

was introduced with ISO-8859.

� EBCDIC (Extended Binary Coded Decimal Interchange) also encodes each char-

acter using one byte and can therefore also represent 256 characters.

� Double-byte code pages require between 1 and 2 bytes per character. This

enables the representation of 65,536 characters, of which only 10,000 to 15,000

characters are normally used. For example, the code page SJIS is used for Japa-

nese and BIG5 is used for traditional Chinese fonts.

Using these character sets, all languages can be handled individually in one ABAP-

based SAP system. Difficulties arise if texts from different incompatible character

sets are mixed in one central system. The difficulty is due to an 8-bit representa-

tion of a byte being interpreted differently based on the code page to show the
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 11 351
data. The exchange of data between systems with incompatible character sets can

also lead to problems.

The solution to this problem is the use of a character set that includes all charac-

ters at once. Unicode provides this ability. A variety of Unicode character represen-

tations are possible for the Unicode character set (for example, UTF, in which a

character can occupy between 1 and 4 bytes).

From release 6.10 onward, the SAP NetWeaver Application Server supports both

Unicode and non-Unicode systems. Non-Unicode systems are conventional ABAP

systems, in which one character is usually represented by one byte. Unicode sys-

tems are ABAP systems that are based on a Unicode character set and that have a

corresponding underlying operating system and database. To determine if your

system is a Unicode system, select System • Status and look at the SAP data area in

the center of the dialog box (see Figure 11.1).

Figure 11.1 SAP Data from the Status Dialog

Before release 6.10, many ABAP programming methods were based on the fact

that one character corresponded to one byte. Before a system is converted to Uni-

code, ABAP programs must therefore be modified at all points where an explicit or

implicit assumption is made about the internal length of a character.

Unicode Tools

ABAP supports this conversion using syntax rules and language constructs, by

placing an emphasis on retaining as much of the existing source code as possible.

To simplify preparation for the conversion to Unicode, select the Unicode checks

active checkbox in the program attributes (see the example in Figure 11.2) starting

from release 6.10. Program attributes are displayed via Goto • Attributes in the

ABAP editor.

Chapter 11 Unicode352
Transaction UCCHECK supports the activation of this check for existing programs. If

this property is enabled, the program is identified as a Unicode program. For a Uni-

code program, a stricter syntax check is performed than is for non-Unicode pro-

grams. In some cases, statements must also be enhanced by using new additions.

A syntactically correct Unicode program will normally run with the same seman-

tics and the same results in Unicode and non-Unicode systems. (Exceptions to this

rule are low-level programs that query and evaluate the number of bytes per char-

acter.) Programs that are required to run in both systems should therefore also be

tested on both platforms.

Figure 11.2 Program Attribute for Unicode Checks

In a Unicode system, only Unicode programs can be executed. Before converting

to a Unicode system, the profile parameter abap/unicode_check should be

enabled. This parameter is available starting with release 6.10. It can be used to

enforce the enhanced syntax check for all objects in non-Unicode systems. When

you set this parameter, only Unicode-enabled objects (objects with the Unicode

flag) are executable. This parameter should be enabled only if all customer pro-

grams have been enabled according to Transaction UCCHECK. Non-Unicode pro-

grams can only be executed in non-Unicode systems. All language constructs that

have been introduced for Unicode programs can, however, also be used in non-

Unicode programs.

To run Transaction UCCHECK, you enter the programs you want to check: all

objects in the customer namespace, all objects of type FUGS (function group with

customer include), and any SAP programs you modified. The initial selection

screen is shown in Figure 11.3, and an example of a detected problem is shown in

Figure 11.4.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 11 353
Figure 11.3 Selection Screen of Transaction UCCHECK

Figure 11.4 Detected Errors of Transaction UCCHECK

Because existing programs that were programmed without errors mostly fulfill

the new Unicode rules, they require little modification. Conversely, most pro-

grams that require significant changes are due to an error-prone programming

style. Unicode programs are preferable because they are more easily maintained

and less prone to errors. Just as outdated and dangerous language constructs are

Chapter 11 Unicode354
declared obsolete and are no longer permitted for use in ABAP Objects, the rules

for Unicode programs also offer increased security when programming. This

applies particularly for the storage of external data—in other words, in files. When

creating a new program, the recommendation is for you to always identify the pro-

gram as a Unicode program, and older programs can be converted in stages.

One of the most important differences between a Unicode and non-Unicode pro-

gram is the clear distinction between byte-type and character-type data objects

and the restriction of data types whose objects can be viewed as character types.

This has an influence on all statements in which character-type operands are

expected and, in particular, on byte and character string processing.

In Unicode programs, only the elementary data objects shown in Table 11.1 are now

character types. Structures are character-type data objects if they contain only flat

character-type components (that is, only components from Table 11.1, excluding

text strings).

The Unicode fragment view splits a structure into fragments. A fragment is a

grouping of structure components of the same or similar data types. In nested

structures, the elementary components on the lowest nesting depth are taken into

account when forming fragments in nested structures. The following parts of a

structure are each grouped to form fragments:

� Consecutive flat character-like components of the types C, N, D, and T, between

which there are no alignment gaps, form character-like fragments.

� Consecutive flat byte-like components of the type X, between which there are

no alignment gaps, form byte-like fragments.

� Consecutive numeric components of the types I and F, between which there are

no alignment gaps, each form a separate fragment.

Data Type Meaning

c Text field

d Date field

n Numerical text

t Time field

string Text string

Table 11.1 Character-Type Data Objects
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 11 355
� Each individual numeric type P component forms a separate fragment. For this

type of fragment, it is the length that is important, not the number of decimal

places.

� In deep structures, each deep component (reference) forms a separate frag-

ment.

� Each alignment gap is regarded as a fragment.

In Unicode programs, a structure can now essentially only be used at an operand

position that expects a single field if the structure is a character type. An example

of this is shown in Figure 11.5. The statement that produces the error with Unicode

checking shows a simple assignment, but the structure is not considered a charac-

ter type because it contains a hexadecimal and a numeric field. The statement

above it references a structure that is considered to be a character type. It is then

handled in the same way as a data object of type C without error. In non-Unicode

programs, all flat structures and byte-type data objects are also still handled as

character-type data objects (implicit casting).

Figure 11.5 A Non-Flat Structure

Chapter 11 Unicode356
Note

The incorrect use of a structure at operand positions is greatly restricted in Uni-

code programs. For example, a structure that contains a numeric component can

no longer be used at a numeric operand position. In Unicode programs, elemen-

tary data objects of types X and XSTRING are byte types. In non-Unicode pro-

grams, data objects of this type are generally handled as character types.

Some data types, such as numeric data types other than P and the deep data types,

have specific alignment requirements that depend on the hardware platform.

Fields in the memory that have one of these types must begin at addresses that

can be divided by 4, 8, or 16. In Unicode systems, in addition to the alignment

requirements for numeric data objects of types I and F and for all deep data

objects, data objects of character-like data types must also be located in storage

addresses that can be divided by 2 or 4, depending on the Unicode character repre-

sentation. As a consequence, in structures with components of different data

types, the alignment gaps in Unicode systems may be different than those in non-

Unicode systems. Alignment gaps can also occur at the end of structures because

the overall length of the structure is determined by the component with the larg-

est alignment requirement.

Warning

In Unicode programs, the storage of byte strings in character-type containers

causes problems because the byte order of character-type data objects in Unicode

systems is platform-dependent. In non-Unicode systems, this only applies for data

objects of numeric data types. The content of the data object is interpreted incor-

rectly if a container of this type is stored and then imported into an application

server with a different byte sequence.

Offset and length are specified by appending [+off][(len)] to the name of a data

object in the operand position, and the specifications are used to access subareas

of a data object. This type of programming is no longer completely possible in Uni-

code systems because it is not possible to define whether offset and length should

be specified in characters or bytes. Also, restrictions have been introduced that for-

bid access to memory areas outside of flat data objects.

Offset and/or length specifications are permitted for character-type and byte-type

data objects. The specification of offset and length is interpreted as either a num-

ber of characters or as a number of bytes. The rules that determine which data

objects in Unicode programs count as character-type or byte-type objects do not

allow for offset and length specifications for data objects of numeric data types.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 11 357
Note

The method of using data objects of type C as containers for storing structures of

different types, which often are not known until runtime, where components are

accessed using offset and length, is no longer possible in Unicode programs.

Instead of these containers, the statement CREATE DATA can be used to generate

data objects of any structure. To access existing containers, these can be assigned

to a field symbol using the CASTING addition of the ASSIGN statement.

In Unicode, an offset and/or length specification for a structure is only permitted

if the structure is:

� A character type

It only contains flat character-type components.

� Flat

It has a character-type initial fragment according to the Unicode fragment view,

and the offset and/or length specification accesses this initial fragment.

In both cases, the specification of offset and/or length is interpreted as a number

of characters. Figure 11.6 shows a structure with both character-type and non-char-

acter-type components. The Unicode fragment view splits the structure into five

areas, as shown in Figure 11.7.

Figure 11.6 Invalid Offset in Unicode

Chapter 11 Unicode358
Figure 11.7 Fragment View of a Structure

Offset and/or length access is only possible for the character-type initial fragment

F1. Specifications such as struc(21) or struc+7(14) are accepted and handled as a

single field of type C. As shown in Figure 11.6, an access such as struc+57(2) pro-

duces an error in a Unicode program.

In Unicode programs for actual parameters specified in a PERFORM statement, it is

not possible to specify a memory area outside of the actual parameter using offset

and/or length specifications. It is no longer possible to specify an offset without a

length because this would implicitly set the length of the actual parameter.

Tip

Previously, cross-field offset and/or length accesses could be usefully imple-

mented in the ASSIGN statement for processing repeating groups in structures. To

enable this in a Unicode program, the ASSIGN statement has been enhanced with

the additions RANGE and INCREMENT.

The most important differences between the behavior of a Unicode program and a

non-Unicode program are the changed conversion rules for structures, assign-

ments, and comparisons.

Note

Two structures in Unicode programs are only compatible when all alignment gaps

are identical on all platforms. This applies in particular for alignment gaps that are

created by included structures.

In non-Unicode programs, incompatible flat structures are treated as data objects

of type C, but in Unicode programs, conversion rules apply that assign the Unicode

fragment view of the structures. In non-Unicode programs, flat structures are

treated as data objects of type C for an assignment to or from an elementary data

object. However, again in Unicode programs, a conversion rule applies according

to which the structure must be the character type, either completely or at least for

the initial fragment.

As with the assignment, comparison of structures is treated not as c fields, but

according to their Unicode fragment view (see Figure 11.5 for an example). The

same is true when comparing a structure to an elementary data object. The system
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 11 359
again checks whether the structure is the character type, either completely or at

least for the initial fragment.

Since release 3.0, the ABAP Dictionary structures and database tables delivered by

SAP can be enhanced with customer includes or append structures. Such changes

cause problems in Unicode programs if the enhancement changes the Unicode

fragment view. Therefore, the option to classify structures and database tables was

introduced in release 6.20, which makes it possible to recognize and handle prob-

lems related to structure enhancements. This classification is used during the pro-

gram check to create a warning at all points where it works with structures and

where later structure enhancements can cause syntax errors or changes in pro-

gram behavior. When you define a structure or a database table in the ABAP Dictio-

nary, you can specify the enhancement categories.

You can find the dialog shown in Figure 11.8 in the menu Extras • Enhancement Cat-

egory... when editing a table, view, or structure. The meanings of the different set-

tings are shown in Table 11.2.

Figure 11.8 Assigning an Enhancement Category

Level Category Meaning

Not classified The structure does not have an enhancement category.

Cannot be enhanced The structure cannot be enhanced.

Can be enhanced and

character-type

All structure components and their enhancements have

to be character-type and flat.

Can be enhanced and

character-type or numeric

All structure components and their enhancements have

to be flat.

Any enhancements All structure components and their enhancements can

have any data type; for example, you could include a table

type component.

Table 11.2 Enhancement Category Meanings

Chapter 11 Unicode360
In Unicode programs, byte and character string processing are strictly separated.

The operands of byte string processing must be byte-type data objects, and oper-

ands in character string processing must be character-type data objects. In non-

Unicode programs, byte strings are normally handled the same way as character

strings.

In Unicode programs, statements that can be used for byte and character string

processing require that a distinction be made within the statement by the

optional addition IN BYTE MODE or IN CHARACTER MODE. In this case, IN CHARACTER

MODE is the default. The same additions are also used in the statements for deter-

mining length and offset (although in these statements the specifications are

mandatory): DESCRIBE FIELD ... LENGTH and DESCRIBE DISTANCE. Listing 11.1 shows

an example of both modes.

DATA:
lv_text TYPE C LENGTH 1,
lv_hex TYPE X LENGTH 1,
lv_blen TYPE I,
lv_clen TYPE I,
lv_bytes TYPE I.

DESCRIBE FIELD lv_text: LENGTH lv_blen IN BYTE MODE,
LENGTH lv_clen IN CHARACTER MODE.

lv_bytes = lv_blen / lv_clen.

Listing 11.1 Calculating Bytes per Character

There are relational operators for byte strings and for character strings. In Unicode

programs, the latter (for example, CO, CA, CS) can no longer be used for byte strings.

For byte strings, there are new relational operators (for example, BYTE-CO, BYTE-CA,

and BYTE-CS). So you would use

IF lv_hex1 BYTE-CO lv_hex2

instead of

IF lv_hex1 CO lv_hex2.

Likewise, the description functions are divided into description functions for byte

strings and description functions for character strings. In particular, in a Unicode

program, STRLEN can now be used only for character-type arguments, whereas

XSTRLEN is available for byte-type arguments. So you would use

lv_clen = STRLEN(lv_text)
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 11 361
for a character field and

lv_blen = XSTRLEN(lv_hex)

for a byte string.

When structured data objects are used in Open SQL statements, in a non-Unicode

program, their structure is not taken into account; only the length and the align-

ment are checked. In a Unicode program, for structured work areas, the Unicode

fragment view must be correct, and elementary work areas must be character type.

Because the content of files frequently reflects the structure of data in the working

memory, the file interface in a Unicode program must fulfill the following require-

ments:

� It must be possible to exchange data between Unicode and non-Unicode sys-

tems.

� It must be possible to exchange data between different Unicode systems.

� It must be possible to exchange data between different non-Unicode systems

that use different code pages.

Therefore, in Unicode programs, you must always define the code page used to

encode the character-type data that is written in text files or that is read from text

files.

You must also consider that a Unicode program must be executable in a non-Uni-

code system as well as a Unicode system. Some of the syntax rules for the file inter-

face have therefore been modified so that programming data access in Unicode

programs is less prone to errors than in non-Unicode programs.

Before every read or write access, a file must be opened explicitly using OPEN DATA-

SET. If a file is already open, it cannot be opened again. In a non-Unicode program,

the first time a file is accessed, it is implicitly opened using the standard settings.

The statement for opening a file can be applied to an open file in non-Unicode pro-

grams, although a file can be opened only once within a program. When you open

the file, the access type and the file storage type must be specified explicitly using

the additions INPUT|OUTPUT|APPENDING|UPDATE and [LEGACY] BINARY|TEXT MODE.

When you open a file in TEXT MODE, the ENCODING addition must be used to specify

the character representation. When you open a file in LEGACY MODE, the byte order

(endian) and a non-Unicode code page must be specified. In non-Unicode pro-

grams, if nothing is entered, a file is opened with implicit standard settings. The

following is an example using the encoding statement:

Chapter 11 Unicode362
OPEN DATASET gv_filelist
FOR INPUT IN TEXT MODE ENCODING DEFAULT.

If a file is opened for reading, the context can only be read. In non-Unicode pro-

grams, it is also possible to gain write access to these files. If a file is opened as a

text file, only the contents of character-type data objects can be read or written. In

non-Unicode programs, byte-type and numeric data objects are also allowed.

The issue with ABAP lists is correct column alignment of East Asian characters: In

Unicode systems, the number of memory cells does not match the number of

screen columns if the texts contain East Asian characters (full-width characters).

The memory cells used for these characters (fields of type C with length 1) are 8 bits

long in non-Unicode systems and 16 bits long in Unicode systems. In Unicode sys-

tems, almost all characters (including East Asian characters) fit in one memory

cell. However, East Asian full-width characters take up two screen columns in

ABAP lists, whereas European characters take up only one screen column.

Important Terminology

Elementary data objects of types X and XSTRING are byte type, and the following

elementary data objects are considered character type: C, D, N, T, and STRING. Struc-

tures in Unicode are grouped by components of the same or similar data types,

which produces a fragment view. Fragments can also be based on alignment gaps.

Practice Questions

The following practice questions will help you evaluate your understanding of the

topic. The questions shown are similar in nature to those found on the certifica-

tion examination. Although none of these questions will be found on the actual

exam, they allow you to review your knowledge of the subject. Select the correct

answers and then check the completeness of your answers in the following solu-

tion section. Remember that you must select all correct answers and only correct

answers on the exam to receive credit for the question.

1. How can Unicode checks be made? Select all that apply.

� A. In any system (after release 6.10) by specifying the program has Unicode

checks active

� B. By running Transaction UCCHECK
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Practice Questions Chapter 11 363
� C. Only in a Unicode system or as part of a conversion to a Unicode system

� D. Cannot be enforced

2. Memory requirements are identical in a non-Unicode system and in a Uni-

code system.

� A. True

� B. False

3. What is the difference between a Unicode and non-Unicode program? Select

all that apply.

� A. Byte-type data objects cannot be assigned to character-type data objects.

� B. Byte-type data objects cannot be compared to character-type data objects.

� C. Offset positioning in a Unicode structure is restricted to character data

objects.

� D. Offset positioning in a Unicode structure is restricted to flat data objects.

4. Two structures in Unicode programs are only compatible if all alignment gaps

are identical on all platforms.

� A. True

� B. False

5. What does the enhancement category for a database table or structure do?

Select all that apply.

� A. Makes a table Unicode-compliant

� B. Specifies the types of changes that can be made to the structure

� C. Can produce warnings at incompatible points for the structure

� D. Can identify where program behavior may change

6. What must you specify in a Unicode system when opening a file in TEXT MODE?

� A. The ENCODING addition

� B. The byte order

� C. The code page

Chapter 11 Unicode364
7. Which you should specify in a non-Unicode system when opening a file in

TEXT MODE? Select all that apply.

� A. The ENCODING addition

� B. The byte order

� C. The code page

8. Which elementary field types are considered a character type? Select all that

apply.

� A. C

� B. D

� C. F

� D. I

� E. N

� F. STRING

� G. T

� H. X

� I. XSTRING

9. When included in a structure, which elementary field types allow the struc-

ture to be considered a character-type data object? Select all that apply.

� A. C

� B. D

� C. F

� D. I

� E. N

� F. STRING

� G. T

� H. X

� I. XSTRING
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Practice Question Answers and Explanations Chapter 11 365
Practice Question Answers and Explanations

1. Correct answers: A, B

SAP provides the tools to perform or enforce the Unicode checks prior to your

actual conversion. The ability to enforce Unicode checks exists in any release

after release 6.10 (when Unicode was supported) without the need to actually

convert to Unicode. The recommendation is to turn the check on as soon as

possible to minimize the number of changes to developed programs. It is better

to develop new programs correctly rather than possibly introduce an issue

when going back to make a change to the program later.

2. Correct answer: B

Memory requirements will always be larger on a Unicode system owing to the

increased size of the characters. Depending on the method of encoding, the

increase may be slight, but the requirements will be larger.

3. Correct answers: All options

Owing to the enforcement of byte-type and character-type rules, on a Unicode

system only byte-type fields may be assigned or compared to other byte-type

fields. The same is true for character-type fields. Offset positioning is restricted

to flat data objects or character data objects.

4. Correct answer: A

Two structures in Unicode programs are only compatible when all alignment

gaps are identical on all platforms. This applies in particular to alignment gaps

that are created by included structures.

5. Correct answers: B, C, D

The enhancement category makes it possible to recognize and handle prob-

lems related to structure enhancements. This classification is used during the

program check to create a warning at all points where it works with structures

and where later structure enhancements can cause syntax errors or changes in

program behavior.

6. Correct answer: A

In a Unicode system, you must specify the ENCODING addition when opening a

file (dataset).

7. Correct answers: B, C

In a non-Unicode system, you must specify both the byte order and the code

page when opening a file (dataset).

Chapter 11 Unicode366
8. Correct answers: A, B, E, F, G

Character (text), Date, String, and Numeric text are all considered character

type fields. All other elementary types use binary storage.

9. Correct answers: A, B, E, G

Character (text), Date, and Numeric text are all considered character type fields.

Strings, as they are a dynamic length (and therefore a deep component), will

not allow a structure to be considered a character type data object.

Takeaway

You need to understand what Unicode is and why it is necessary in a global envi-

ronment. You should have knowledge of differences between data objects in a

non-Unicode system and data objects in a Unicode system. You should have an

understanding of what additions to statements exist and what changes to syntax

validation are enforced in Unicode.

Refresher

You need to understand the different data object types that produce a byte-type

data object, a character-type data object, or a structure and how the fragment view

restricts certain assignments or comparisons. You also need to understand what

restrictions for file processing exist with Unicode.

Table 11.3 lists the key concepts of Unicode.

Key Concept Definition

Byte type Elementary data objects of types x and xstring are byte types.

Character type The following elementary data objects are now character types: c, d,

n, t, and string.

Fragment view A fragment is a grouping of structure components of the same or

similar data types.

Table 11.3 Key Concepts Refresher
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Takeaway Chapter 11 367
Tips

Whereas the vast majority of the concepts presented in this chapter should be sec-

ond nature, especially if you have programmed on SAP NetWeaver release 6.20 or

later, it is important that you understand the behavioral differences of assign-

ments, comparisons, and file processing.

You should now be able to make an ABAP program Unicode-compliant. You

should have an understanding of the potential issues related to data objects and

file processing. This knowledge will enable you to successfully pass this portion of

the certification examination.

© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Chapter 12

Classical Screens

Techniques You’ll Master:

� Design screens with the Screen Painter

� Design a GUI status and GUI title using the Menu Painter

� Set the GUI status and process function codes in the Process

After Input (PAI) flow logic screen

� Understand screen events such as PROCESS BEFORE OUTPUT, PRO-

CESS AFTER INPUT, PROCESS ON HELP-REQUEST, and PROCESS ON

VALUE-REQUEST

� Write dialog programs

Chapter 12 Classical Screens370
A dialog-driven program consists of screens, the GUI status, a GUI title, and an

ABAP program.

� Each dialog in the system is controlled by one or more screens. The screens have

a layout that determines the position of input/output fields and other graphical

elements such as checkboxes and radio buttons. You design a screen layout

using the Screen Painter in the ABAP Workbench. Each screen has flow logic that

influences the program flow. The flow logic consists of Process Before Output

(PBO) and Process After Input (PAI) logic, and optionally, Process on Help-

Request (POH) and Process on Value-Request (POV) for any actions required.

� Each screen has a GUI status, which controls the menu bars, standard toolbars,

and application toolbars with which the user chooses the function in the appli-

cation.

� The GUI title is used to define the title for a screen. This is especially important

if there is more than one screen in a sequence of screens within a GUI dialog.

� An ABAP program contains the dialog module that is called by the screen flow

logic and processes the user input from the GUI status. Type programs are the

containers of dialog modules and therefore are known as module pools and can

only be started using transaction codes.

In this chapter we will cover module pool programming and the various program

objects required to create a module pool program. We will cover screen design

using the Screen Painter, screen events, and screen flow logic. We will cover GUI

status and GUI title design and its use in dialog programming. Finally, we will

cover screen processing, dynamically modifying screens, and screen design using

table controls.

Real-World Scenario

You have to write a custom dialog program for your customer to allow them

to maintain employee master data and payroll information because the SAP

standard application does not satisfy their business requirement.

The application should have two screens: In the first screen you will enter the

employee’s personal information, and in the second one you will enter the

payroll-related data. The dialog program should allow the user to enter data

on the screen and save the data in the database when the user clicks on the
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 12 371
Save button on the screen. The dialog program should also have the option to

edit and display the saved data. The transaction should be user-friendly and

should validate user input and display (F1) help for the screen fields and

value help (via the (F4) key) wherever possible.

Objectives of this Portion of the Test

The objective of this portion of the exam is to verify your knowledge regarding the

dialog programs. You are expected to be able to write a dialog program. You should

be able to design screens using the Screen Painter, design a GUI status using the

Menu Painter, and create GUI titles for a screen. You are also expected to be aware

of possible screen events such as PBO (PROCESS BEFORE OUTPUT), PAI (PROCESS AFTER

INPUT), POH (PROCESS ON HELP-REQUEST), and POV (PROCESS ON VALUE-REQUEST).

You should be able to handle the transaction flow based on user actions.

The certification examination will give minimal weight to this chapter compared

to all of the other topics in the examination. This means that this chapter is among

those where the percentage of questions related to the topic is smaller than most

other chapters. The reason it is given average weight is that you are not likely to

have to write a custom dialog program in a project.

Key Concepts Refresher

You need to understand the dialog programming concept to create a dialog trans-

action. Dialog programming consists of the screen, GUI status, GUI title, module

pool program, and transaction. You have to create a module pool program, screen,

GUI status, GUI title, and transaction code to execute a dialog program.

To develop a dialog transaction, you have to use the Screen Painter to design the

screens and populate the screen attributes. You also have to write the screen flow

logic to control the data transfer from the screen area to the ABAP program and

vice versa.

In screen flow logic you have to write code for PROCESS BEFORE OUTPUT, PROCESS

AFTER INPUT, PROCESS ON HELP-REQUEST, and PROCESS ON VALUE-REQUEST. The PBO

event is triggered before the screen is displayed, so generally you populate screen

fields with default values and set the GUI status and screen title in the PBO event

block. The PAI event is triggered when the user performs some action on the

Chapter 12 Classical Screens372
screen such as clicking on a button, selecting a menu entry, pressing (Enter), or

selecting a function on the screen. You write code for the PAI event block to inter-

pret the user action, validate user entries, and control the flow of the transaction

accordingly. Similarly, POH and POV are the events that are triggered when the

user selects (F1) help for a screen element or requests value help via (F4) for a

screen field.

Note

You can write code to provide your own (F1) help and (F4) help in the POH and

POV event block, but remember that the (F1) help usually comes from a data ele-

ment and that (F4) input can be provided by search helps.

Also, to write a dialog program, you have to design the GUI status (which consists

of menus, toolbars, and function codes) and the GUI title and be able to assign

these to the screen in the screen flow logic.

Screen Design

ABAP programs or dialog transactions use screens to interact with the user. The

screens for dialog programming are created with the Screen Painter. Selection

screens are created for an executable ABAP program with ABAP declarative state-

ments (i.e., PARAMETERS and SELECT-OPTIONS) to obtain user input for the program.

You do not have to define the screen flow logic for selection screens, whereas for

dialog screens you do. Screens in module pools can only be addressed using dialog

transactions.

Selection Screen

The standard selection screen for executable ABAP programs is called and con-

trolled by the ABAP runtime environment; selection screens are discussed in

detail in Chapter 13. In this chapter we will discuss dialog screens, which are created

with the Screen Painter. You can create screens to be used in any program of type

1 (executable program), M (module pools), and F (function groups).

A program can consist of a single screen or a sequence of screens. You can start a

single screen or start a sequence of screens from an ABAP program by using the

CALL SCREEN statement. For screens in a module pool program of type , the start

screen is specified in the transaction code you assign to the module pool. A default
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 12 373
next screen is defined in the Screen Painter for all dialog screens, but you can over-

ride this dynamically within the program, specifically in the PAI flow logic for the

screen.

A screen is a form of dialog between the user and the program. A screen can con-

tain various elements for allowing the user to interact with the program or for dis-

playing the field content. A typical dialog screen consists of screen elements such

as input/output fields, buttons, radio buttons, checkboxes, and screen flow logic.

The screen flow logic consists of Process Before Output (PBO), Process After Input

(PAI), Process on Help-Request (POH), and Process on Value-Request (POV).

The screen flow logic must contain at least PBO and PAI event blocks. Each screen

has its own flow logic that calls dialog modules in the ABAP program to prepare

the data for display on the screen or to process the user’s entries. Generally, you

prepare data or modify the screen display in the PBO event block and react to the

user action in the PAI event block. You can define the (F1) help for the screen field

in the POH event and value help in the POV event, but we recommend that you use

the (F1) help and value help (possible entries) from the ABAP Dictionary. You can

write your own (F1) help and (F4) input help only if you want to override the ABAP

Dictionary help. Hence, POH and POV event blocks are optional.

Screen Painter

Each screen has a GUI status, containing the menu bar, the standard toolbar, and

optionally, an application toolbar. The GUI status also contains the function codes

for each of the functions in the menus and toolbars. You should create a GUI title

for each screen. This helps the user, especially if you have a sequence of several

screens. You can also create a GUI title for the screen dynamically within the pro-

gram. We discuss the GUI status and title in detail later in this chapter.

You design the screen layout with the Screen Painter. The Screen Painter has a lay-

out editor that has a graphical mode and an alphanumeric mode. Both editors

offer the same functionality but with different interfaces. The graphical mode is

easy to use and uses a drag-and-drop interface, whereas with the alphanumeric

editor you use menus and the keyboard to design the screen. You can switch

between the two modes via the menu path Utilities • Settings • Graphical layout

editor. The Screen Painter can be accessed from the ABAP Workbench or via Trans-

action SE51.

Chapter 12 Classical Screens374
You define the screen attributes, screen layout, and the flow logic in the Screen

Painter. The screen attributes describe the properties of the screen as a whole and

its runtime behavior. Figure 12.1 displays the screen attributes in the Screen

Painter.

Figure 12.1 Screen Painter: Screen Attribute Definition

The general screen attributes are specified on the Attributes tab. The following are

some of the screen attributes required to create a screen:

� Program

Each screen is associated with an ABAP program. The program type can be 1, M,

or F. If you create the screen from the program itself, this will be populated auto-

matically. The name of the program appears as the screen title (see Figure 12.1).
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 12 375
� Short Description

A short meaningful text for the screen.

� Screen number

The screen number can be up to four digits long and must be a unique number

within the container program.

Warning

Selection screen numbers and Screen Painter screen numbers belong to the same

namespace, so your dialog screen number cannot be 1000 if your program has a

selection screen as well.

� Screen type

The screen type can be a normal screen, subscreen, or dialog box. A normal

screen occupies the whole GUI window, whereas the dialog box occupies only

part of the GUI window. Subscreens are displayed in a subscreen area of another

screen.

� Next Screen

This defines the default next screen in the screen sequence. The screen will call

itself if the next screen number is the same as the current screen number. You

define the current screen as the last screen in the chain by leaving the next

screen field blank or setting it to 0 (zero). The next screen number can be

dynamically changed within the program to override the statically defined

screen number. At runtime the screen number is stored in the system variable.

The next screen number can be changed dynamically in the PAI flow logic by

the ABAP statement SET SCREEN <screen_no>.

� Cursor position

This defines the cursor position when the screen is displayed. By default, the

cursor is positioned on the first input field on the screen. You can also dynami-

cally specify the cursor position within the program.

Screen Layout

The next step when creating the screen is to define the screen layout. You can

place input/output fields, texts, buttons, checkboxes, radio buttons, table con-

trols, tab strip controls, and so on on the screen. Screen elements can be defined by

adopting the attributes of fields from the ABAP Dictionary, or you can use a data

Chapter 12 Classical Screens376
object defined in your program. Generally, you create the screen elements from

the ABAP Dictionary, because this way you get access to the field labels, input help,

documentation, and so on. The screen layout can be designed in the Graphical

Screen Painter. Figure 12.2 displays the screen layout in the Screen Painter.

Figure 12.2 Create Screen Layout

The graphical layout editor has three buttons, as depicted in Figure 12.2:

� Maintain Element Attributes

The Maintain Element Attributes button opens a new window for you to main-

tain the screen element attributes. These differ depending on the type of ele-

ment you have chosen; for example, an input field or button. Figure 12.3

displays the screen element attribute maintenance screen.

Show element list
Get Dictionary or

program field

Maintain attribute
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 12 377
Figure 12.3 Screen Element Attribute

You can define general attributes such as screen group, function code, function

type, search help, parameter ID, and so on. You can also specify the ABAP Dictio-

nary attributes, program attributes, and display attributes for the screen ele-

ments.

� Get Dictionary/Program Fields

The Get Dictionary/Program Fields button opens a new window to create the

screen elements and input/output fields with reference to ABAP Dictionary and

program fields (see Figure 12.4).

Chapter 12 Classical Screens378
Figure 12.4 Select Screen Element: Get Dictionary/Program Fields

� Show Element List

The Show Element List button opens a new window to show all available screen

elements belonging to the screen, including their attributes for maintenance.

Figure 12.5 displays the screen element list screen.

Figure 12.5 Screen Element List
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 12 379
Every screen has the 20-character OK field, which is not displayed on the screen and

which you must name. The name we usually give it is OK_CODE. The OK field is also

referred to as the function code. You need to assign a name to the OK field to use it

in the program. You also need to declare a data variable with exactly the same

name, of type SY-UCOMM. This way the contents are automatically transported from

the screen to the ABAP program. A user action triggers the PAI event, and the func-

tion code the user chooses is stored in this field and is passed to the ABAP pro-

gram. Based on the function code (or OK), you control the program flow and dictate

what happens next.

Tip

The following are recommendations for screen layout design:

� We recommend that you use ABAP Dictionary tables or structures to define

screen layout. This way the screen field can adopt the ABAP Dictionary attri-

butes such as field label, value help, and (F1) help. You do not have to write POH

or POV functions unless you want to override ABAP Dictionary (F1)/(F4) func-

tions.

� If you use the ABAP Dictionary, the system provides you with the automatic con-

sistency check for the input fields. These checks include type check, foreign key

check, and fixed value check. All of these checks are automatically supplied with

the information in the ABAP Dictionary.

� You should also declare an ABAP Dictionary structure as the work area using the

TABLES statement in the ABAP program. This way, the screen field contents are

automatically copied in the ABAP program with the matching field name.

Screen Flow Logic

The screen flow logic is created after the screen attributes and the layout of the

screen have been defined. Screen flow logic is created in the flow logic editor of the

Screen Painter, and you cannot use ABAP statements directly here. Screens have

their own set of keywords for use in the PBO, PAI, POH, and POV event blocks. The

allowed keywords for the screen flow logic are mentioned later in this section.

You create special module calls in screen flow logic, and it is these modules that

contain the ABAP statements. Modules are like subroutines for the screens. They

can be created by double-clicking on the module name in the flow logic editor or

by right-clicking on the program name in Transaction SE80. Modules that are

Chapter 12 Classical Screens380
called in the PBO processing block must be defined using the MODULE <name> OUT-

PUT statement and ENDMODULE at the end. The modules that are called in the PAI

processing block must be defined using MODULE <name> INPUT in the ABAP pro-

gram.

If you create the module using forward navigation, then it will be created with that

syntax. Listing 12.1 displays the screen flow logic, and Listing 12.2 displays the mod-

ule definition for the ones defined in the screen flow logic.

PROCESS BEFORE OUTPUT.
MODULE init_screen_100.

PROCESS AFTER INPUT.
MODULE user_command_100.

Listing 12.1 Screen Flow Logic

&--
*& Module INIT_SCREEN_100 OUTPUT
&--
MODULE init_screen_100 OUTPUT.
CLEAR input.
SET PF-STATUS 'STATUS_100'.
radio1 = 'X'.
CLEAR: radio2, radio3.

ENDMODULE. "INIT_SCREEN_100 OUTPUT

&--
*& Module USER_COMMAND_100 INPUT
&--
MODULE user_command_100 INPUT.
output = input.
box1 = radio1.
box2 = radio2.
box3 = radio3.
IF exit NE space.

LEAVE PROGRAM.
ENDIF.

ENDMODULE. "USER_COMMAND_100 INPUT

Listing 12.2 PBO and PAI Module Definition

The screen flow logic must contain at least the two statements PROCESS BEFORE

OUTPUT and PROCESS AFTER INPUT, and these are created automatically when you

create the screen itself. displays the keywords you can use in these event blocks.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 12 381
Screen Processing

The ABAP processor controls the program flow within a module, and the Dynpro/

screen processor controls the flow logic and prepares data to be displayed on the

screen. For a screen and its ABAP program to be able to communicate, the screen

and the ABAP program field names should be identical. When this is the case, the

contents of the screen fields are transported to the ABAP program fields with the

same name, and vice versa. You should use ABAP Dictionary structures or pro-

gram fields to define the screen elements and input/output fields and declare the

ABAP Dictionary structure as a work area in the program by using the TABLES state-

ment. This ensures that screen field content is copied automatically from the

screen to the ABAP data object with the matching name and vice versa.

The contents of the ABAP work area are copied to their corresponding screen fields

after all of the modules defined in the PBO processing block have been executed.

Similarly, the system copies the contents of the screen fields to the corresponding

fields in the ABAP work area before the first module in the PAI processing block is

executed, unless this transport has been delayed by the use of the FIELD state-

ment.

When a screen is processed, the PROCESS BEFORE OUTPUT event is triggered, the cor-

responding event block in the screen flow logic is executed, and then the screen is

displayed. The PROCESS AFTER INPUT event is triggered, and the corresponding

event block is executed when the user selects a function code on the screen, for

example, clicking on a button, selecting a menu entry, pressing a function key on

Keyword Function

MODULE Calls a dialog module in ABAP programs

FIELD Specifies the point at which the contents of

the screen field must be transported

ON Used in conjunction with FIELD

VALUES Used in conjunction with FIELD

CHAIN Starts a processing chain

ENDCHAIN Ends a processing chain

CALL Calls a subscreen

LOOP Starts processing a screen table

ENDLOOP Stops processing a screen table

Table 12.1 Keywords for Screen Flow Logic

Chapter 12 Classical Screens382
the keyboard, or just pressing (Enter). If the user requests field help by pressing

(F1) or value help by pressing (F4), it triggers the PROCESS ON HELP-REQUEST and

PROCESS ON VALUE-REQUEST event.

PBO is about preparing the screen, perhaps providing default values for the screen

fields that may or may not come from the database, and setting up the GUI status

and GUI title. The PAI event is triggered when the user interacts with the screen,

perhaps by clicking on a button on the screen, selecting a function from the menu,

standard toolbar, or application toolbar, pressing a function key on the keyboard,

and so on. The function code is passed to the OK_CODE screen field from the ele-

ment list and is passed to the identically named field in the ABAP program.

We have already discussed that you can call the ABAP dialog modules from the

screen flow logic by using the MODULE statement. You can also call ABAP dialog

modules in a controlled manner by using the FIELD statement in the screen flow

logic (see Listing 12.3).

PROCESS BEFORE OUTPUT.
MODULE init_screen_100.

PROCESS AFTER INPUT.
MODULE user_command_0100.
MODULE module_1.
FIELD box2.
MODULE module_2.
FIELD: box1, box3.
MODULE module_3.

Listing 12.3 Controlled ABAP Dialog

� FIELD

The FIELD statement is used in PAI, POH, and POV event blocks. It does not have

any effect on the PBO event block and hence should not be used in PBO event

blocks. It can be used with PAI modules for input checks on the screen field. The

input field against the FIELD keyword will be ready for re-input if the module

defined for the FIELD statement issues an error or warning message. You can

also call the ABAP dialog modules conditionally by using the addition ON INPUT

or ON REQUEST with the FIELD statement.

� CHAIN...ENDCHAIN

The CHAIN and ENDCHAIN statements can be used to validate user input on a set

of fields on a dialog screen. You can send an error or warning message from the

module that is called using the FIELD statement. All of the fields that belong to

the processing chain within the CHAIN and ENDCHAIN statement are ready for

input if an error or a warning message is sent from the module. For the warning
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 12 383
message, all of the fields within the chain block will be ready for input, but you

can continue with the transaction by pressing the (Enter) key. However, for an

error message you have to resolve the error, and then you can proceed with the

transaction.

If you use the FIELD statement outside a CHAIN statement, only a single field is

made ready for input when a warning or error message is displayed, whereas

with the CHAIN and ENDCHAIN statements, the set of fields with the statement

block is made ready for input if an error or warning is displayed. Listing 12.4 dis-

plays the screen flow logic for an input check with the CHAIN and ENDCHAIN state-

ments, and Listing 12.5 displays the module for an input check.

PROCESS BEFORE OUTPUT.
MODULE init_screen_9001.

PROCESS AFTER INPUT.
MODULE cancel AT EXIT-COMMAND.
FIELD input1 MODULE module_1.
FIELD input2 MODULE module_2.
FIELD input3 MODULE module_3.
CHAIN.
FIELD input4.
MODULE chain_module_1.
FIELD input5.
FIELD input6 MODULE chain_module_2.

ENDCHAIN.
MODULE execution.

Listing 12.4 Input Check with CHAIN and ENDCHAIN Statements

* MODULE chain_module_1 INPUT

MODULE chain_module_1 INPUT.

IF input4 < 10.
MESSAGE w000(fb) WITH text-003 '10' text-002.

ENDIF.
ENDMODULE " CHAIN_MODULE_1 INPUT

* MODULE chain_module_2 INPUT

MODULE chain_module_2 INPUT.

CLEAR sum.
sum = input4 + input5 + input6.
IF sum <= 100.
MESSAGE e000(fb) WITH text-004 '100' text-002.

ENDIF.
ENDMODULE. " CHAIN_MODULE_2 INPUT

Listing 12.5 Input Check Module

Chapter 12 Classical Screens384
� ON INPUT

The ON INPUT addition for the FIELD statement calls the ABAP dialog when the

screen field contains a value other than the initial value for that screen field. The

initial value for the screen field is determined by the data type of the screen

field. The initial value is a space () for character fields and 0 (zero) for numeric

fields.

� ON REQUEST

The ON REQUEST addition for the FIELD statement calls the ABAP dialog module

only if the user has entered something in the screen field. The module is exe-

cuted even if the user enters the initial value for the data type of the screen field

or overwrites an existing value with the same value.

� ON CHAIN-INPUT and ON CHAIN-REQUEST

The ON CHAIN-INPUT and ON CHAIN-REQUEST additions work the same way as ON

INPUT and ON REQUEST except that the ABAP dialog module is called if at least

one field listed in the FIELD statement within the CHAIN statement meets the

condition Listing 12.6 displays the conditional processing of an ABAP dialog.

PROCESS BEFORE OUTPUT.
MODULE init_screen_9002.

PROCESS AFTER INPUT.
MODULE cancel AT EXIT-COMMAND.
CHAIN.

FIELD: input1, input2.
MODULE chain_module_1 ON CHAIN-INPUT.
FIELD input3
MODULE chain_module_2 ON CHAIN-REQUEST.

ENDCHAIN.

Listing 12.6 Conditional ABAP Dialog

� AT CURSOR-SELECTION

The AT CURSOR-SELECTION addition calls the ABAP dialog module if the cursor is

positioned on a particular screen element.

Automatic input checks are performed in the PAI event before the data is trans-

ferred to the ABAP program. The automatic checks are performed based on the

screen element attributes. If a screen field is mandatory, then the user must enter

data before the PAI event block can start. If the screen input field refers to an ABAP

Dictionary field, then the field-level validation defined in the ABAP Dictionary,

such as checks against the check table or domain fixed values, is performed before

the PAI processing can start.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 12 385
The user input for the field should match the format defined for the field in the

Screen Painter; otherwise, the user gets an error message before the PAI process-

ing can start. In such a case you can exit the screen only by entering a valid value

or selecting the menu item of function type E. For the menu item of function type

E, you have to code the exit logic within the dialog module defined with the addi-

tion AT EXIT-COMMAND in PAI. Listing 12.6 displays the usage of AT EXIT-COMMAND

in screen flow logic, and Listing 12.7 displays the code in the module for AT EXIT-

COMMAND.

&--
*& Module CANCEL INPUT
&--
MODULE cancel INPUT.

CASE ok_code.
WHEN 'BACK'.

LEAVE.
SET SCREEN 0.
LEAVE SCREEN.

WHEN 'EXIT'.
LEAVE.
SET SCREEN 0.
LEAVE SCREEN.

WHEN 'CANCEL'.
SET SCREEN 0.
LEAVE SCREEN.

ENDCASE.
LEAVE PROGRAM.

ENDMODULE. " CANCEL INPUT

Listing 12.7 Module for AT EXIT-COMMAND

You can validate the user input with the screen flow logic by the addition VALUES

with the FIELD statement or by checking against a database table. Listing 12.8 dis-

plays the use of the FIELD and VALUE keyword to validate the user input.

PROCESS BEFORE OUTPUT.
MODULE init_screen_0100.

PROCESS AFTER INPUT.
MODULE cancel AT EXIT-COMMAND.
FIELD carrier VALUES (not 'AA', 'LH', between 'QF' and 'UA').
MODULE module_1.
FIELD connect SELECT *

FROM spfli
WHERE carrid = carrier AND connid = connect
WHENEVER NOT FOUND SEND ERRORMESSAGE 107

WITH carrier connect.
MODULE module_2.

Listing 12.8 Input Check in Screen Flow Logic

Chapter 12 Classical Screens386
If you call a module using a FIELD statement, when issuing an error or warning

message after doing the checks in the module, only the input fields mentioned

against the FIELD keyword will be available for re-input. The user should be

allowed to correct an incorrect entry. This can be done by sending an error mes-

sage or a warning message (see Listing 12.9 and Listing 12.10). With a warning mes-

sage, the user will be given an option to re-input a valid value but can proceed

without entering the value by pressing the (Enter) key.

PROCESS BEFORE OUTPUT.
MODULE init_screen_9001.

PROCESS AFTER INPUT.
MODULE cancel AT EXIT-COMMAND.
FIELD input1 MODULE module_1.
FIELD input2 MODULE module_2.
FIELD input3 MODULE module_3.
CHAIN.

FIELD input4.
MODULE chain_module_1.
FIELD input5.
FIELD input6 MODULE chain_module_2.

ENDCHAIN.
MODULE execution.

Listing 12.9 Input Check in ABAP Dialog

&--
*& Module MODULE_1 INPUT
&--
MODULE module_1 INPUT.
IF input1 < 50.

MESSAGE e000(fb) WITH text-001 '50' text-002.
ENDIF.

ENDMODULE. " MODULE_1 INPUT

* MODULE module_2 INPUT

MODULE module_2 INPUT.
IF input2 < 100.

MESSAGE e000(fb) WITH text-001 '100' text-002.
ENDIF.

ENDMODULE. " MODULE_2 INPUT
--
* MODULE module_3 INPUT

MODULE module_3 INPUT.
IF input3 < 150.

MESSAGE w000(fb) WITH text-001 '150' text-002.
ENDIF.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 12 387
ENDMODULE. " MODULE_3 INPUT

--
* MODULE chain_module_1 INPUT

MODULE chain_module_1 INPUT.

IF input4 < 10.
MESSAGE w000(fb) WITH text-003 '10' text-002.

ENDIF.
ENDMODULE. " CHAIN_MODULE_1 INPUT

* MODULE chain_module_2 INPUT
--
MODULE chain_module_2 INPUT.

CLEAR sum.
sum = input4 + input5 + input6.
IF sum <= 100.
MESSAGE e000(fb) WITH text-004 '100' text-002.

ENDIF.
ENDMODULE. " CHAIN_MODULE_2 INPUT

Listing 12.10 ABAP Dialog for Input Check

In the flow logic, module_1 is called using the FIELD statement for the field input1.

If an error message is triggered from module_1, then the field input1 will be ready

for input again, allowing the user to enter a new value.

Similarly, if an error or warning message is sent from the module using the FIELD

statement within CHAIN and ENDCHAIN, then all fields within the CHAIN and END-

CHAIN statements are ready for input. In Listing 12.11 if the module CHAIN_MODULE_

2 sends an error message, then all of the fields within the CHAIN and ENDCHAIN are

ready for input again.

CHAIN.
FIELD input4.
MODULE chain_module_1.
FIELD input5.
FIELD input6 module chain_module_2.

ENDCHAIN.

Listing 12.11 Input Field Check in ABAP Dialog

Lastly, you can code your own (F1) field help and value help functions for screen

fields, but you should only do this if the ABAP Dictionary fields that your screen

fields are based upon do not have (F1)/(F4) help or if you want to override it. There

are three ways to provide (F1) field help for the user:

Chapter 12 Classical Screens388
� You can use ABAP Dictionary fields for the screen element definition, in which

case (F1) help automatically displays the data element documentation.

� You can display data element supplementary documentation for (F1) help if the

data element documentation is not sufficient for your application. You can dis-

play or maintain the data element supplementary documentation via the

menu path Goto • Documentation • Supplementary Documentation. Data ele-

ment supplementary documentation is program- and screen-specific, and the

link is maintained in table THLPF. Figure 12.6 displays the data element supple-

ment link for the ABAP Dictionary data element MATNR, along with the program

and the screens for which this extra documentation has been created.

Figure 12.6 Table Entry for Data Element Supplementary Help

The syntax to display the data element supplementary documentation for (F1)

help is as follows:

PROCESS ON HELP-REQUEST.
FIELD mara-matnr MODULE f1_help_matnr WITH var.

You can populate the var in the module f1_help_matnr or use the literal instead of

the variable:

PROCESS ON HELP-REQUEST.
FIELD mara-matnr WITH 0090.

This syntax is only valid if the program, screen number, field name, and supple-

mentary documentation number are maintained in Table THLPF.

If the first two methods for the display of help are not sufficient for your applica-

tion, then you can display (F1) help from the dialog modules by writing your own

code. Generally, you can use the function module HELP_OBJECT_SHOW_FOR_FIELD

or HELP_OBJECT_SHOW to display help instead of creating your own screen from

scratch for your application to display help. Listing 12.12 displays the screen flow

logic for (F1) help, and Listing 12.13 displays the (F1) help implementation for a

dialog module.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 12 389
PROCESS BEFORE OUTPUT.
PROCESS AFTER INPUT.

MODULE cancel AT EXIT-COMMAND.
PROCESS ON HELP-REQUEST.

FIELD demof1help-field2 MODULE f1_help_field2 WITH var.
FIELD field3 MODULE f1_help_field3.
FIELD field4 MODULE f1_help_field4.

Listing 12.12 Screen Flow Logic for F1 Help with Dialog Module

* MODULE f1_help_field2 INPUT
--
MODULE f1_help_field2 INPUT.

int = int + 1.
CASE int.
WHEN 1.

var = '0100'.
WHEN 2.

var = '0200'.
int = 0.

ENDCASE.
ENDMODULE. "f1_help_field2 INPUT

* MODULE f1_help_field3 INPUT

MODULE f1_help_field3 INPUT.

CALL FUNCTION 'HELP_OBJECT_SHOW_FOR_FIELD'
EXPORTING

doklangu = sy-langu
doktitle = text-002
called_for_tab = 'DEMOF1HELP'
called_for_field = 'FIELD1'.

ENDMODULE. "f1_help_field3 INPUT

* MODULE f1_help_field4 INPUT

MODULE f1_help_field4 INPUT.

CALL FUNCTION 'HELP_OBJECT_SHOW'
EXPORTING

dokclass = 'TX'
doklangu = sy-langu
dokname = 'DEMO_FOR_F1_HELP'
doktitle = text-003

TABLES
links = links.

ENDMODULE. "f1_help_field4 INPUT

Listing 12.13 F1 Help Implementation for Dialog Module

Chapter 12 Classical Screens390
Similar to (F1) help, you can display (F4) input help based on ABAP Dictionary

fields, based on the screen field attributes where you can attach a search help for

the input field, or by writing your own dialog module. You use the syntax in Lis-

ting 12.14 for value help if you are going to program it yourself in the screen flow

logic.

PROCESS ON VALUE-REQUEST.
FIELD carrier MODULE value_carrier.
FIELD connection MODULE value_connection.

Listing 12.14 Screen Flow Logic for Value Help

Coding for the (F4) help is in the modules value_carrier and value_connection.

Listing 12.15 displays this value help code within the module.

MODULE value_carrier INPUT.
CALL FUNCTION 'F4IF_FIELD_VALUE_REQUEST'

EXPORTING
tabname = 'DEMOF4HELP'
fieldname = 'CARRIER1'
dynpprog = sy-repid
dynpnr = sy-dynnr
dynprofield = 'CARRIER'.

ENDMODULE.

MODULE value_connection INPUT.
CALL FUNCTION 'DYNP_VALUES_READ'

EXPORTING
dyname = sy-repid
dynumb = sy-dynnr
translate_to_upper = 'X'

TABLES
dynpfields = dynpro_values.

READ TABLE dynpro_values INDEX 1 INTO field_value.
SELECT carrid connid

FROM spfli
INTO CORRESPONDING FIELDS OF TABLE values_tab
WHERE carrid = field_value-fieldvalue.

CALL FUNCTION 'F4IF_INT_TABLE_VALUE_REQUEST'
EXPORTING

retfield = 'CONNID'
dynpprog = sy-repid
dynpnr = sy-dynnr
dynprofield = 'CONNECTION'
value_org = 'S'

TABLES
value_tab = values_tab.

ENDMODULE.

Listing 12.15 F4 Input Help Implementation
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 12 391
However, we recommend that you use the input help from the ABAP Dictionary.

You can also attach a search help in the screen field attributes. Hence, we recom-

mend that you program the input help if you want to override the ABAP Dictio-

nary input help.

GUI Status and Title Design

The GUI status and GUI title together make up the user interface for the screen.

The GUI status for a screen consists of the menu bar, a standard toolbar, the appli-

cation toolbar, and the function key settings and is designed using the Menu

Painter tool. The GUI title is used to define the title for the screen. Each screen

should have a GUI status and GUI title (see Figure 12.7). The GUI status consists of a

menu bar, standard toolbar, and application toolbar. You can also assign function

keys to the menu items.

Figure 12.7 SAP User Interface

Function key

GUI title

Menu bar Standard toolbar

Application toolbar

Chapter 12 Classical Screens392
Menus are an element that provides the user with a range of functions that are rel-

evant to the screen or application. A menu bar is made up of individual menus and

can have up to eight menus including the System and Help menus. The entries

under the menu can be functions, separators, or submenus. To create a GUI status

in the Menu Painter, create the status, create the menu bar, create the menu

entries, define the function key settings, define the standard toolbar and applica-

tion bar, and as a final step, activate the status.

Note

The System and Help menus are always present for every screen and have identi-

cal functions that cannot be modified.

Once you have created the GUI status, you need to create the menu bar and then

create the individual menu functions and entries. To create a menu bar, click on

the Expand icon of the menu bar text field, enter the menu title (or use the pre-

defined standard), and replace the first menu title.

Each menu can have up 15 entries or functions. To add functions to a menu, dou-

ble-click on the menu bar and then add the function code and function text in the

Code and Text columns, respectively. To add submenus, enter just the text in the

Text column, double-click, and then enter the code and text in the cascading

menu. The function within the menu can be active or inactive. You can activate or

deactivate menu items via the menu path Extras • Function active<-> inactive. You

can also activate or deactivate the menu item dynamically with the PBO event

block. Activation and deactivation of menu items is useful when the same GUI sta-

tus is being used for a number of screens within the transaction. When you have a

screen sequence in a transaction, some menu options will be relevant for some

screens and not for the others, but to maintain consistency, the same GUI status

can be used for each screen, with menu functions switched off when they are not

relevant.

Functions within the menu or toolbars are identified by function codes. It doesn’t

matter where the function appears or is triggered from (i.e., menu, toolbar, or func-

tion key), but the function type is relevant. The attribute Function Type determines

the intended purpose of the function. The function type is also sometimes

referred to as a functional type. The function type can tell when and how to carry

out the processing of the function. Table 12.2 displays the valid function types for

the functions belonging to SAP screens.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 12 393
For functions with function type E, the system executes the dialog module that is

called with the addition AT EXIT-COMMAND, if one has been defined in the PAI event

block. The syntax for AT EXIT-COMMAND and the example code was discussed earlier

in the Screen Processing section of this chapter. The system executes the MODULE

XXX AT EXIT-COMMAND before the automatic input checks and before any other mod-

ules in the PAI event block. When a function of type T is triggered, the system

leaves the calling program and calls the transaction that is to be found in the func-

tion code. This has the same effect as the LEAVE TO TRANSACTION statement. Most of

the function code will have the functional type blank (' '). Figure 12.8 displays the

function code attribute screen.

Figure 12.8 Function Code Attribute Screen

Type Meaning

Blank Normal function code processing in PAI module. For normal function code, you

can leave the function type blank; that is, blank means normal function code.

E Triggers an AT EXIT-COMMAND module in the PAI processing block.

T Calls another transaction.

S Triggers a system function and is used internally in a standard SAP application.

You shouldn’t use this in your own applications.

P Triggers a function defined locally at the GUI. This function does not trigger the

PAI event; instead, it is processed at the presentation server level. A good exam-

ple of this function type is function codes attached to tab strips, where the user

can switch between tabs without any logic happening in the screen flow logic.

Table 12.2 Function Types in SAP Systems

Chapter 12 Classical Screens394
A function can be created with static texts or dynamic texts. A static text is one

that is specified when you design the function, whereas with dynamic text, a place-

holder is used that will be populated at runtime. For dynamic texts, you have to

assign a field to the function, and the contents of the field are displayed as the

menu text at runtime. You can assign an icon (Icon Name attribute) to the function

if a function has a static text. An icon is displayed instead of the function text if the

function is assigned to the button. The Function Text is displayed as quick info text

for the icon or button. The contents of the Info Text attribute are displayed on the

status bar of the screen when the user selects the function for which this attribute

is populated. The button displays the icon and the content of the Icon Text if the

Icon Text attribute is populated. The Fast Path attribute can be populated by speci-

fying a single letter, which is used to select a menu function without using the

mouse.

Figure 12.9 displays the function setting for the menu item in the GUI status along

with the Fast Path attribute.

Figure 12.9 GUI Status with Function Code Attribute
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 12 395
The application toolbar contains buttons for the most frequently used functions

specific to the application. The application toolbar can contain up to 35 buttons, or

separators. The standard toolbar is the same for every screen in the SAP system. It

contains a set of buttons with a fixed assignment of a function key, such as the

Save and Print functions.

The button or the function is grayed out if the particular function is not available

for the screen. This is controlled in the Menu Painter by making a function inac-

tive. An example of a grayed out function is the Save icon if the application has the

functionality to only display the data and does not allow the user to change the

data on the screen.

You can also assign function keys to functions. This allows the user to select the

function code by using a function key rather than a menu entry or button. The

function key assignment consists of reserved function keys, recommended func-

tion keys, and freely assigned function keys:

� Reserved function keys are the ones whose assigned value cannot be changed

and are assigned to functions on the standard toolbar. You can activate or deac-

tivate their functions, even though you cannot change the function key assign-

ment. These functions appear on the standard toolbar on screens and lists.

� Recommended function keys are just a proposal by the SAP system and comply

with the SAP system ergonomic standards; that is, the same function is repre-

sented by this function key in other screens, and therefore users expect this

function to be represented by the same function key in your screen also.

� Freely assigned function keys can be used for assigning a function key to any

other function code.

Tip

You should always define function code type E for your dialog screen and code for

those functions in the dialog module that are called within the PAI event block

with the addition AT EXIT-COMMAND. This allows users to exit the screen by select-

ing the function code of type E, without entering the value on mandatory input

fields on the screen. These function codes are the standard ones such as Back,

Cancel, and Exit in most of the standard SAP transactions on the standard toolbar.

Creating a GUI Status and GUI Title

You create the GUI status and GUI title in the Menu Painter or with the Repository

Browser. The Menu Painter can be accessed directly from the ABAP Workbench or

Chapter 12 Classical Screens396
via Transaction SE41. The GUI status and title are always program-specific, so the

program name is required to define the GUI status. You need to specify the pro-

gram name, and the GUI status name can be up to 20 characters long.

Figure 12.10 displays the Menu Painter initial screen from the ABAP Workbench.

The first screen shows the menu path from the ABAP Workbench to start the Menu

Painter, and the second screen is the initial screen of the Menu Painter. Figure 12.11

displays the Menu Painter interface.

Figure 12.10 Create GUI Status from ABAP Workbench

You create menus bar by clicking on the Expand icon of the menu bar text field.

You create functions for the menu by double-clicking on the menu header. For

each menu you specify the functions, which consist of a function code and text
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 12 397
and optionally submenus and separators. The submenus can be up to three levels

deep. You can also define a fast path for each menu item. A menu can have up to 15

entries.

Figure 12.11 Menu Painter Interface

Most functions should appear in the menus and on the application toolbar,

because some users prefer menus and some prefer buttons. The application tool-

bar can be created by clicking on the Expand icon of the application toolbar text.

Each application toolbar item can be assigned an icon, info text, and fast path, or

you can include separators instead of a function.

You must assign a function key to most commonly used menu functions. The

standard toolbar is generated by the system on its own and always includes the

same functions. Items on the standard toolbar can be deactivated if not required,

but the function key assignment and other attributes cannot be changed.

Similarly, you create the GUI title with the Menu Painter. The GUI title is also pro-

gram-specific and is represented by a code that can be up to 20 characters long.

The title text itself can be up to 60 alphanumeric characters long. The title appears

as the screen heading and can have up to nine variables that can be dynamically

populated in the program. The GUI title can be translated. Figure 12.12 displays the

interface for the GUI title definition.

Chapter 12 Classical Screens398
Figure 12.12 GUI Title Definition

Note

At runtime the value of the screen title is stored in the system variable SYST-
TITLE.

Setting the GUI Status and the GUI Title

The GUI status and GUI title are assigned to the screen inside a dialog module

called in the PBO event block. We recommend that you define the GUI status and

GUI title for each screen. If you have not assigned the GUI status and GUI title for

the screen, then it inherits them from the previous screen of the transaction.

A screen can have more than one GUI status. For example, the GUI status for dis-

play mode might be different than the GUI status for edit or change mode. There-

fore, the GUI status can be assigned dynamically to the screen. The GUI status and

GUI title are set in the PBO event block by using the statements SET PF-STATUS and

SET TITLEBAR, respectively, inside the dialog module with the PBO event block.

You can also define buttons in your screen and assign the function code and use it

instead of function codes or menu items defined via the GUI status.

Listing 12.16 shows the syntax to assign the GUI status and GUI title for the screen.

MODULE init_screen_0100 output.
IF SY-TCODE = 'ZCHANGE'.
SET PF-STATUS 'STATUS_100'.
SET TITLEBAR '100'.
ELSEIF SY-TCODE = 'ZDISPLAY'.
SET PF-STATUS 'STATUS_200'.
SET TITLEBAR '200'.
ENDIF.

ENDMODULE.

Listing 12.16 Assignment of GUI Status and GUI Title in PBO Module
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 12 399
The syntax to set a title that contains variables is as follows:

SET TITLEBAR XXX WITH <&1> ... <&9>

where XXX is the title name and <&1> to <&9> are variables from 1 to 9.

The GUI status might have many menu items and functions, but these can be dis-

abled or deactivated dynamically in the PBO event block within the dialog module,

or as we have discussed, they can also be deactivated in the Menu Painter. The

functions can be deactivated by using the EXCLUDING <fcode> addition with the

statement SET PF-STATUS. <fcode> can be hard-coded, a variable, or an internal

table containing many function codes. The internal table should have all of the

functions that have to be deactivated. Listing 12.17 shows the syntax to deactivate

the function codes of the GUI status.

MODULE status_0100 output.
APPEND 'CHANGE' TO fcode.
APPEND 'CHANGE' TO fcode.
SET PF-STATUS 'STATUS_100' EXCLUDING fcode.

ENDMODULE.

Listing 12.17 Example Code to Deactivate Function Code

You then have to define the internal table fcode in the main program. The syntax

of the internal table should be as follows:

DATA fcode TYPE TABLE OF sy-ucomm.

The selection of the function code on the screen triggers the PAI event, and based

on the function code, you can control the flow of the program. The function code

is placed in the system variable SY-UCOMM and in the OK_CODE field of the screen, in

the PAI event. If you have defined a variable with the same name as the OK type

screen field, the function code will automatically be copied and can therefore be

evaluated in the ABAP code. Listing 12.18 shows an example code for processing

the function code in the PAI event block.

PROCESS AFTER INPUT
...
MODULE USER_COMMAND_9001.

MODULE user_command_9001 INPUT.
save_ok = ok_code.
CLEAR ok_code.
CASE save_ok.
WHEN 'BACK'
SET SCREEN 9000.

WHEN 'EXIT' or 'CANCEL'.
LEAVE PROGRAM.

Chapter 12 Classical Screens400
WHEN OTHERS.
output = save_ok.

ENDCASE.
ENDMODULE.

Listing 12.18 Code to Control Program Flow for Individual Function Code

Table Control Programming

A table control is an area on the screen that is used to display or enter data in a tab-

ular form. A table control has a table header, column headers, and columns. At

runtime, a table control provides the functionality of vertical and horizontal

scrolling, column width adjustment, row and column selection, and the ability to

change the positions of columns. Figure 12.13 displays the various table control

components.

Figure 12.13 Components of Table Control

To define a table control, you have to define the table control area, the table con-

trol elements, and the table title for the table control. All this is defined within the

Screen Painter. You also need to declare the table control in the program. The Table

Control icon is selected from the element pallet of the Screen Painter to create the

table control area. Table columns for the control can be created from ABAP Dictio-

nary fields or program fields. Column headings can be the ABAP Dictionary text

associated with the field or can be custom text defined with a text field on the

screen. The attributes of the table control and the table columns also have to be

maintained, as do any other elements on the screen.

Title bar Header line Column heading

Table line

Setting button

Vertical scrollbar

Horizontal scrollbar

Selection column

Leading fixed column
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 12 401
You can use the Table Control Wizard to create a table control quickly. This allows

you to automatically create the table control, assign ABAP Dictionary or program

fields for the columns, assign the attributes for the table columns, create some of

the screen flow logic, generate the relevant PBO and PAI modules for the table

maintenance, and generate the data definitions for the table control in the ABAP

program. Table 12.3 displays the table control attributes you will specify on the

Screen Painter during screen design.

The syntax for the table control in the program is as follows:

CONTROLS flights TYPE TABLEVIEW USING SCREEN 100

The table control name is flights, and it is created on screen number 100. The

table control name in an ABAP program should be identical to the table control

created on the screen.

Screen Flow Logic for Table Control

When you process table controls, you must use the LOOP ... ENDLOOP statement in

the PBO and PAI event blocks in the screen flow logic. This statement is required

Attribute Description and Use

Tab Title Indicates whether the table control should have a title or not.

w/ColHeads Allows you to create column headings for the table control.

Configbl Allows the user to save the table control settings at runtime.

Resizing Indicates that the table supports vertical and horizontal sizing. You set

this attribute if you want the table size to change with the GUI win-

dow size.

Separators You can specify whether you want to have vertical and horizontal sep-

arators for the table columns and lines.

Line Sel. Allows the user to select lines. You have the option of NONE, SINGLE,

and MULTIPLE line selection for this attribute.

Column Allows column selection. Choose NONE, SINGLE, or MULTIPLE.

w/sel. Column Specifies whether a line selection column should appear for the table

control. You have to specify the name of this column if you want to

have the line selection column.

Fixed Column Excludes one or more columns from horizontal scrolling.

Table 12.3 Table Control Attributes

Chapter 12 Classical Screens402
for each table control on your screen. It is required to copy the data back and forth

from the ABAP program to the table control fields and vice-versa.

The LOOP is required because the table control consists of several rows. You can

also use the LOOP AT <INTERNAL_Table> ... ENDLOOP statement in the screen flow

logic. This form of the LOOP statement loops through the screen table and the inter-

nal table in parallel. Using this form of the loop statement, the system transfers

the internal table rows to the screen fields and vice versa. Figure 12.14 displays the

screen flow logic without an internal table, and Figure 12.15 displays screen flow

logic with an internal table.

Figure 12.14 Flow Logic without Internal Table

Figure 12.15 Flow Logic with Internal Table

The table control must be declared in the ABAP program for each table control

defined on the screen. The control flights is the name of the table control on the
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 12 403
screen. This statement declares a deep structure for the table control flights and

is used to read the table attributes in the ABAP program. The data type of the deep

structure corresponds to the type CXTAB_CONTROL defined in the ABAP Dictionary

type group CXTAB.

The structure CXTAB_CONTROL is type SCXTAB_CONTROL and contains components

that represent the attributes of the table control. The component CXTAB_COLUMN is

a table of type SCXTAB_COLUMN and contains the attributes of the columns of the

table control. Internal table CXTAB_COLUMN is a component of the structure CXTAB_

CONTROL.

Figure 12.16 displays the structure CXTAB_CONTROL, and Figure 12.17 displays the

structure CXTAB_COLUMN.

Figure 12.16 Table Control Structure

Figure 12.17 Structure of the Table Control Column

Chapter 12 Classical Screens404
The ability to scroll using a scroll bar is automatically implemented and managed

by the system. The control flights-lines should be set to the number of lines in

the internal table before you edit the table control. You can easily implement the

coding for scrolling the table control such as page up, page down, or jump to a dif-

ferent page by using the table control attributes.

Figure 12.18 displays the use of the table control attribute to implement page up

and page down functionality for scrolling the table control.

Figure 12.18 Implement Scroll Functionality with Table Control Attribute

Tip

See the demo programs demo_dynpro_tabcont_loop and demo_dynpro_tab-
cont_loop_at in the SAP system for the implementation of table control.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 12 405
Modifying Screens Dynamically

You normally set the attribute of the screen element in the Screen Painter, but it is

also possible to override the screen attribute in the ABAP program with the system

table SCREEN. SCREEN is an internal table with the header line, and you do not need

to declare this in the program. You cannot see this table in the Debugger, and you

can only access it through its header line. Table 12.4 displays the structure of the

SCREEN table.

You can modify the attribute of the screen element in an ABAP program during

the PBO event block. You have an entry for each screen element in the system

internal table SCREEN. You override the static screen attribute by modifying the

screen attribute in the PBO event block. Listing 12.19 shows the example code to

modify the screen attribute in the ABAP program.

PROCESS BEFORE OUTPUT.
MODULE modify_status_9001.
MODULE modify_status_9001 OUTPUT.
LOOP AT SCREEN.

Component Length Type Meaning

NAME 132 C Name of the screen field

GROUP1 3 C Modification group 1

GROUP2 3 C Modification group 2

GROUP3 3 C Modification group 3

GROUP4 3 C Modification group 4

REQUIRED 1 C Field input is mandatory

INPUT 1 C Field is ready for input

OUTPUT 1 C Field is ready for output

INTENSIED 1 C Field is highlighted

INVISIBLE 1 C Field is suppressed

LENGTH 1 X Field length

ACTIVE 1 C Field is active

DISPLAY_3D 1 C Three-dimensional box

VALUE_HELP 1 C Input help button display

REQUEST 1 C Input exists

Table 12.4 Screen Table Structure

Chapter 12 Classical Screens406
IF SCREEN-GROUP1 = 'GR1'
SCREEN-INPUT = '0'.

ELSEIF SCREEN-GROUP1 = 'GR2'.
SCREEN-REQUIRED = '1'.

ELSEIF SCREEN-GROUP1 = 'GR3'.
SCREEN-ACTIVE = '0'.

ENDIF.
ENDLOOP.
ENDMODULE.

Listing 12.19 Example Code to Modify Screen Attribute Dynamically in Program

Creating a Module Pool Program

Screens can be created for executable programs, function groups, and module

pools. You can start a screen in an executable program and function group using

the CALL SCREEN statement, but screens in module pools can only be addressed

using dialog transactions. Let’s discuss the steps to create a module pool program,

as follows:

1. Create a module pool program in the ABAP Workbench.

2. Create screens for the module pool program.

3. Create the flow for the screen in the PBO and PAI event blocks and optionally in

the POH or POV event blocks if required.

4. Create PBO and PAI modules as processing blocks for the corresponding event.

5. Create the GUI status to evaluate user actions.

6. Create the GUI title.

7. Create the dialog transaction.

The program name for the module pool program should start with SAPMZ, followed

by any meaningful name. For our example we will use the name SAPMZDEMO. You

create the module pool program in the ABAP Workbench, and it proposes the top

include module. Select the proposal and continue. The top include module name

for the above module pool program proposed by the system is MZDEMOTOP.

After creating the module pool program, you can create new program objects such

as screens, GUI status, and GUI titles for your program from the context menu in

the object navigation area. Figure 12.19 displays the context menu (Create • Pro-

gram) used to create the program objects from the object navigation area.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 12 407
Figure 12.19 Context Menu to Create Program Objects

You then create the screen, screen flow logic, GUI status, and GUI title for the pro-

gram, followed by the dialog module in the ABAP program. You can create the

dialog module by forward navigation from the screen flow logic. The system will

propose the include name for the PBO and PAI event modules. The standard name

proposed by the system for the above program would be MZDEMOO01 for PBO mod-

ules and MZDEMOI01 for PAI modules, but you can create your own name and create

a separate include for each module if you want (however, it’s not recommended).

The forward navigation (double-click on the module name in the screen flow logic)

creates an empty module in the include program for each module defined in the

flow logic. It is your task to write the code within the empty modules using ABAP

language statements. You also need to declare the global variable in the top

include program, ZDEMOTOP. This includes the declaration of the table structure

used to create the screen fields or the user-defined screen element used to create

the screen fields. Doing this ensures that the screen content is copied to the ABAP

area with the matching field names.

Finally, you create the dialog transaction for the module pool program, where at

the most, you have to specify the module pool program, transaction text, and start

screen for the transaction.

Chapter 12 Classical Screens408
Important Terminology

You need to understand the difference between the dialog screen and the selection

screen. The selection screen for the executable program is called and controlled by

the ABAP runtime. With the dialog screen you can control the screen flow, and you

have to write the screen flow logic.

You cannot use the ABAP statement in the screen flow logic. In the screen flow

logic you call the dialog module, and within the dialog module you can use ABAP

statements.

There are four event blocks in the dialog screen: PBO, PAI, POV, and POH. The code

within the PBO event block is executed before the screen is displayed, and the code

within the PAI block is triggered when the user performs an action on the screen

such as selecting the menu item, clicking on the button on the screen, pressing

(Enter), or selecting a function on a screen.

The GUI status is used to set the status of the screen that is used to display the

menu bar, menu item, toolbar, and application bar. The GUI title is used to assign

the heading to the screen. Finally, it is important to remember that the module

pool program can only be accessed by the transaction code.

Practice Questions

The following practice questions will help you evaluate your understanding of the

topic. The questions shown are similar in nature to those found on the certifica-

tion examination. Although none of these questions will be found on the exam

itself, they allow you to review your knowledge of the subject. Select the correct

answers and then check the completeness of your answers in the following solu-

tion section. Remember that you must select all correct answers and only correct

answers on the exam to receive credit for the question.

1. Which of the following is correct?

� A. The screen attributes can be modified in the PROCESS AFTER INPUT event

block.

� B. The screen attributes can be modified in the PROCESS BEFORE OUTPUT event

block.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Practice Questions Chapter 12 409
� C. The screen attributes can be modified in the PROCESS BEFORE OUTPUT and

PROCESS AFTER INPUT event blocks.

� D. None of the above.

2. The static sequence of the default next screen can be established by the value

in the screen attribute Next Screen.

� A. True

� B. False

3. If you enter the value “0” or blank (“ ”) as the next screen, then the system

resumes processing from the point at which the screen was initiated, assum-

ing the Next Screen attribute is overridden dynamically in the program.

� A. True

� B. False

4. The Next Screen attribute can be temporarily overwritten by the set screen

statement (that is, SET SCREEN 200).

� A. True

� B. False

5. The FIELD statement does not have any effect in the PBO event block, and it

should not be used in the PBO event block.

� A. True

� B. False

6. The FIELD statement with the ON INPUT addition is used to conditionally call

the ABAP dialog module. The ABAP dialog module is called if the value of the

screen field is other than the initial value.

� A. True

� B. False

Chapter 12 Classical Screens410
7. The FIELD statement with the ON REQUEST addition calls the ABAP dialog mod-

ule if any value is entered in the screen field.

� A. True

� B. False

8. You can call a module for the FIELD statement to validate user entry on the

input field. You can validate the entry on the input field and send an error or

a warning message from an ABAP dialog module.

� A. True

� B. False

9. If an error or warning message is sent from the ABAP dialog module for the

FIELD statement within the CHAIN and ENDCHAIN statements, then all of the

fields within CHAIN and ENDCHAIN are ready for user input again.

� A. True

� B. False

10. The user interface consists of the GUI status and GUI title.

� A. True

� B. False

11. At most, a menu bar can have 10 menus.

� A. True

� B. False

12. At most, how many buttons can the application toolbar have on the screen?

� A. 20

� B. 30

� C. 10

� D. 35

� E. None of the above
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Practice Question Answers and Explanations Chapter 12 411
13. At most, how many menu items (including functions, separators and sub-

menus) can a menu have on the screen?

� A. 15

� B. 10

� C. 20

� D. None of the above

14. The data is transferred and displayed on the screen after the processing of the

PBO.

� A. True

� B. False

15. Which statement will interrupt the processing of the current screen and

branch to new screen?

� A. CALL SCREEN <NNNN>

� B. LEAVE TO SCREEN <NNNN>

� C. SET SCREEN <NNNN>

� D. None of the above

Practice Question Answers and Explanations

1. Correct answer: B

The screen attributes can be modified in the PROCESS BEFORE OUTPUT event

block.

2. Correct answer: A

The screen sequence can be determined from the content of the Next Screen

attribute field, but it can be overridden.

3. Correct answer: A

If the next screen attribute is not specified, then the system will resume pro-

cessing from the point at which the screen was initiated. Basically, a next screen

of 0/space terminates the screen sequence. This may result in the user exiting

the application.

Chapter 12 Classical Screens412
4. Correct answer: A

The next screen attribute can be overwritten temporarily by using the SET

SCREEN statement.

5. Correct answer: A

The FIELD statement is used in conjunction with the module statement in the

PAI event block to validate user input or to delay the transport of a field value

from the screen to the ABAP program. The ABAP dialog module is called only if

the value of the field is changed, depending on whether the addition ON INPUT

or ON REQUEST is used.

6. Correct answer: A

The FIELD statement used in conjunction with the module statement with the

ON INPUT addition is used to conditionally execute the ABAP dialog module if

the input value of the field is other than the initial value according to the data

TYPE of the input field.

7. Correct answer: A

The ON REQUEST addition for the FIELD statement calls the ABAP dialog module

only if a value is entered in the screen field.

8. Correct answer: A

You call a module for the FIELD statement to validate user entry on the input

field. The entry on the input field associated with the FIELD statement is vali-

dated with the dialog module, and accordingly, you can send an error or warn-

ing message. The input field is ready for re-input if the dialog module sends an

error or warning message for the user input on the screen field.

9. Correct answer: A

If an ABAP dialog module called with the FIELD statement within CHAIN and

ENDCHAIN sends an error or warning message, then all of the fields within the

CHAIN and ENDCHAIN are ready for user input.

10. Correct answer: A

The user interface for a screen consists of the GUI status and the GUI title.

11. Correct answer: B

The menu bar can have up to eight menus including the system and help menu,

which means six can be defined by the developer.

12. Correct answer: D

The application toolbar can have up to 35 buttons per screen.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Takeaway Chapter 12 413
13. Correct answer: A

A menu can have up to 15 entries including functions, separators, and sub-

menus.

14. Correct answer: A

The data is transferred and displayed after the processing of the PBO.

15. Correct answer: A

You use the CALL SCREEN <NNNN> statement to interrupt the processing of the

current screen and call a new screen or screen sequence.

Takeaway

You should be able to describe the steps required to write a dialog transaction. You

need to create screens, design the screen layout, create screen flow logic, and write

an ABAP program for dialog programming. You also need to create a GUI status

and GUI title and assign them to each screen. This displays the menu bar, menu

items, and optionally, the application toolbar if it has been defined in the GUI sta-

tus. You should be able to code the PROCESS BEFORE OUTPUT, PROCESS AFTER INPUT,

PROCESS ON HELP-REQUEST, and PROCESS ON VALUE-REQUEST event blocks and should

be aware of the screen/Dynpro keywords that can be used in screen flow logic.

Refresher

Table 12.5 shows the key concepts for dialog programming.

Key Concept Definition

Dialog screen A dialog screen is designed with the Screen Painter. You set the

general screen attributes on the attribute screen, design the

screen layout, set the field attributes in the element list, and

write the flow logic in the flow logic editor. These steps are

required for each screen.

Dialog screen events For each dialog screen, you can have up to four event blocks:

PROCESS BEFORE OUTPUT, PROCESS AFTER INPUT, PROCESS ON

HELP-REQUEST, and PROCESS ON VALUE-REQUEST. You can

write code for these four events for a dialog screen. The PBO and

PAI event blocks are required, whereas the other two, that is,

POH and POV, are optional.

Table 12.5 Key Concepts Refresher

Chapter 12 Classical Screens414
We have covered screen design, various attributes of the screen, and the screen

elements. We have also covered in detail the screen events PBO, PAI, POH, and POV

and discussed how the data is transferred from the screen area to the ABAP pro-

gram and vice versa. We have covered in detail the use of the GUI status and GUI

title for dialog programming and the Menu Painter tool to design the GUI status.

Finally, we have discussed how to assign a GUI status and title to the screen. This

knowledge will allow you to easily pass this topic on the certification examination.

GUI status A GUI status is created with the Menu Painter and is required

for any screen. GUI status is assigned to the screen to define the

menu bar, menu items, application toolbar, and so on.

PROCESS ON HELP-
REQUEST

You can write your own (F1) help for screen fields. (F1) help for

a screen field is coded in the PROCESS ON HELP-REQUEST event

block.

PROCESS ON VALUE-
REQUEST

You can write your own custom value help ((F4) help) for screen

fields in the PROCESS ON VALUE-REQUEST event block.

Key Concept Definition

Table 12.5 Key Concepts Refresher (Cont.)
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Chapter 13

Selection Screens

Techniques You’ll Master:

� Explain the purpose of selection screens

� Design a selection screen

� Create input fields with PARAMETERS and SELECT-OPTIONS

� Define selection screens with tab strip controls

� Define the selection screen events and their processing

� Implement input checks on selection screens

Chapter 13 Selection Screens416
Selection screens are used to provide the user with an interface to supply starting

values for a report. The selection screen can be defined using ABAP language

declarative statements. You can define selection screens for executable reports

and can control the program flow based on the user input.

In this chapter you will learn about selection screens and their use in ABAP pro-

gramming. You will learn how to create selection screens using PARAMETERS and

SELECT-OPTIONS. You will learn to design the screen layout using simple ABAP

statements. You will also learn about the various selection screen events and selec-

tion screen processing within ABAP programs. Finally, you will learn to create tab

strip control selection screens.

Real-World Scenario

You have to write a user-friendly report with a selection screen that allows

users to enter data on the screen to control program flow. The report should

expect input from the user, and based on this input, the data should be

extracted from the database for processing. The program flow and the list

display should be based on the user input on the selection screen. You need

to coordinate with the business and gather business requirements for the

report.

To write a user-friendly report, you need to have a good understanding of the

selection screen and the various program events for the selection screen.

You also have to educate the development team about the concept of the

selection screen, its features, and how to use it for program development.

Objectives of this Portion of the Test

The objective of this portion of the certification exam is to examine your under-

standing regarding the selection screen and the various options available to

design it.

Key Concepts Refresher

Selection screens are required for your custom programs when you want the user

to input data to control the flow of the program or to restrict data extraction from
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 13 417
the database. Selection screens are often used with an executable ABAP program

such as ABAP reports, conversion programs, and so on.

You can define a standard selection screen by using ABAP language declarative

statements such as PARAMETERS and SELECT-OPTIONS. Simple statements allow you

to create input fields, checkboxes, and radio buttons. The ABAP language also pro-

vides you with the declarative statement SELECTION-SCREEN to format the layout

of the selection screen without using the Screen Painter or Menu Painter. You can

also define a user-defined selection screen apart from the default standard selec-

tion screen for the program.

Selection Screens

Selection screens serve as an interface between the user and the program. You

often use selection screens to provide the user with an interface to input data for

the program. This input data is used to control the program flow or to restrict or

filter the data selection from the database. Selection screens are typically used in

an executable program. The user simply has to use ABAP statements to create

input fields, checkboxes, and radio buttons, whereas the Dynpros (dialog screens)

are created using the Screen Painter, and each Dynpro screen requires screen flow

logic. For more information regarding Dynpro screens, refer to Chapter 12. You can

design the selection screen to allow the user to enter a single value or complex

selection criteria.

The ABAP language declarative statements are used to define a selection screen for

an ABAP program. You can design the screen layout, input fields, checkboxes, and

radio buttons using these simple ABAP language statements and do not require

the Screen Painter to define the selection screen for ABAP programs.

Selection Screen Design

The selection screen for a program is defined using ABAP language declarative

statements, unlike dialog screens, which are designed using the Screen Painter and

Menu Painter. The two statements to define selection screens are PARAMETERS and

SELECT-OPTIONS.

Chapter 13 Selection Screens418
Parameters

The PARAMETERS statement is used to define a single input field on the selection

screen. The maximum length of the parameter field is 255 characters. PARAMETERS

are used to control the program flow or restrict the database access, so typically

you would use this in the WHERE clause of your SELECT statement to filter which

records you retrieve.

The data object declared with the PARAMETERS statement appears as an input field

on the selection screen. You declare parameters with the TYPE or LIKE statement,

similar to a variable declaration with the DATA statement. You can use ABAP types,

local data types, or global data types to define the parameters for your program.

The parameter name can be up to eight characters long. Unless you maintain the

selection text for the parameter, the parameter name is displayed as text to the left

of the input field. The text label can be maintained as a selection text by following

the menu path Goto • Text Elements • Selection Texts.

The PARAMETERS statement adopts the attribute of the ABAP Dictionary field if it

refers to the data type from the ABAP Dictionary. The selection text for the PARAM-

ETERS statement can be derived from the ABAP Dictionary if the Dictionary refer-

ence checkbox is selected on the selection text screen. Figure 13.1 displays the

selection text box with the option to adopt the selection text from the ABAP Dic-

tionary.

Figure 13.1 Selection Text for the Selection Screen Parameters

The following is an example to define the selection screen using the PARAMETERS

statement:

REPORT ZDEMO1.
PARAMETERS: p_fname TYPE rfpo-rfbifile OBLIGATORY,

p_date TYPE datum DEFAULT sy-datum,
p_price TYPE P DECIMALS 2.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 13 419
Figure 13.2 displays the selection screen for the example code.

Figure 13.2 Selection Screen with Parameters Statement

With the DEFAULT addition, you can set the default value for a parameter. The

default value is displayed on the screen when the user executes the program, and

he can change this default value on the selection screen if he wants. The addition

OBLIGATORY is used to declare the input field as a required field on the selection

screen. The addition MEMORY ID <PID> is used to specify the value of the input field

from the SAP memory. <PID> is the PARAMETER ID for the data elements defined in

the ABAP Dictionary. SAP memory is a user-specific memory area in which the

value is stored for this PARAMATER ID for the duration of the user session. You use

SET/GET PARAMETER ID to store or retrieve value from memory.

You can also use the PARAMETERS statement to declare checkboxes or radio buttons

on the selection screen. The checkboxes are defined by using the addition AS

CHECKBOX, and radio buttons are defined by using the addition RADIOBUTTON GROUP

<GRP>, where <GRP> is the radio button group.

Checkboxes can be used for data selection or program control. Technically, a

checkbox is a one-character field of type C and can have a value of 'X' or blank ('

'). You can provide a default value for the parameters object typed as a checkbox

during the definition, or the user can select or unselect the checkbox on the selec-

tion screen. The PARAMETER has the value 'X' if the checkbox is selected; otherwise,

it has a blank value. Listing 13.1 is an example code to define and use a checkbox

program.

REPORT ZDEMO_CHECKBOX.
PARAMETERS: p_dispall AS CHECKBOX,

P_archfl AS CHECKBOX DEFAULT 'X'.
IF dispall IS INITIAL.
WRITE: /'Display Error Records error only'.

ELSE.
WRITE: /'DISPLAY all records'.

ENDIF.
IF archfl IS NOT INITIAL.
"Archive file

Chapter 13 Selection Screens420
WRITE: /'Archive File'.
ENDIF.

Listing 13.1 Example Code to Define and Use a Checkbox in Program

Radio buttons are always associated with a group in which you can select only but-

tons from the group. Technically, a radio button is a character field of type C and

length 1. Radio buttons can have a value of 'X' or blank (' '). The radio button has

a value of 'X' if it is selected on the screen; otherwise, it has a blank value. You can

use radio buttons in your program to control the flow of the program. At any time,

only one radio button in the group can have a value of 'X', and the rest of the radio

buttons in the group will have a blank value. Listing 13.2 is an example code to

define and use a radio button in a program.

REPORT ZDEMO_RADIOBUTTON.
PARAMETERS: p_pcfile AS RADIOBUTTON GROUP a,

p_appfile AS RADIOBUTTON GROUP a.
IF p_pcfile IS NOT INITIAL.

WRITE: /'READ file from local PC'.
"Read file from PC

ENDIF.
IF p_appfile IS NOT INITIAL.

WRITE: /'READ file from application server'.
"Read file from application server

ENDIF.

Listing 13.2 Example Code to Define and Use a Radio Button in the Program

You can validate user entries against the check table or fixed values of the domain

behind the ABAP Dictionary type. The input value entered on the selection screen

will not be validated if the VALUE CHECK addition is not specified for the PARAME-

TERS. The check is performed even if the value for the parameter field is empty, so

you should only use a value check on a required (mandatory input) field. With the

following parameter declaration, the user can only enter the value defined in the

check table or the fixed value defined in the domain of the ABAP Dictionary data

element s_carr_id.

PARAMETERS: p_carrid TYPE s_carr_id value check.

Select-Options

The SELECT-OPTIONS statement is used to define a complex selection that allows

the user to enter value ranges and complex selection criteria instead of just a sin-

gle input field. The variable name for the SELECT-OPTIONS input field can be up to

eight characters. The SELECT-OPTIONS keyword generates a selection table. The
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 13 421
selection table is an internal table with a standard structure and a header line. The

internal table for the select option is populated automatically based on what the

user enters in the SELECT-OPTIONS input fields, so you do not have to fill the field

in the program.

The structure of the internal table consists of four components:

� SIGN

The data type of SIGN is C, and it has a length of 1. The content of the SIGN deter-

mines whether the values are to be included or excluded. Possible values for

this field are 'I' and 'E'. 'I' stands for inclusion criterion, and 'E' is for exclu-

sion criterion.

� OPTION

The data type for OPTION is C, and it has a length of 2. Table 13.1 shows the valid

operators.

� LOW and HIGH

The data types for LOW and HIGH are the same as the type you give to the select-

option. LOW is the lower limit, and HIGH is the upper limit for the selection crite-

ria, and they correspond to the input fields on the screen. In combination with

the operator in OPTION, the range specifies the selection criteria for the data

selection.

Use the addition FOR to specify the data object already defined in your program,

which should be used to type, or define, the properties of the select option. Both

Value Meaning

EQ Equal

NE Not equal

LE Less than or equal

LT Less than

GE Greater than or equal

GT Greater than

BT Between

NB Not between

CP Contains pattern

NP Does not contain pattern

Table 13.1 Valid Operators for Selection Table Field OPTION

Chapter 13 Selection Screens422
the limit fields LOW and HIGH inherit the attributes of this reference field. Each

line of the selection table formulates a condition for selection criteria.

The syntax for the SELECT-OPTIONS declaration is as follows:

TYPES: BEGIN OF ty_marc,
matnr TYPE marc-matnr,
werks TYPE marc-werks,

END OF ty_marc.
DATA: wa_marc TYPE ty_marc.
SELECT-OPTIONS: s_matnr FOR wa_marc-matnr,

S_werks FOR wa_marc-werks.

MARC is a table, and matnr and werks are the fields of the table MARC. The above dec-

laration creates two selection tables, s_matnr and s_werks, with corresponding

input selection fields on the selection screen. Each SELECT-OPTIONS statement cre-

ates a selection table. Figure 13.3 displays the selection screen for the above decla-

ration.

The user can specify multiple values for each of the SELECT-OPTIONS. Figure 13.4

displays the screen that specifies multiple values for the input field on the selec-

tion screen.

You can assign a default value for SELECT-OPTIONS. Use the following syntax to

define the default value.

� To fill the default for the LOW field use

SELECT-OPTIONS: s_matnr FOR marc-matnr DEFAULT 'A123'.

� To fill the default for the LOW and HIGH fields use

SELECT-OPTIONS: s_matnr FOR marc-matnr
DEFAULT 'A123' TO 'B123'.

� To fill the default for the OPTION field use

SELECT-OPTIONS: s_matnr FOR marc-matnr
DEFAULT 'A123' OPTION NE.

� To fill the default for the SIGN field use

SELECT-OPTIONS: s_matnr FOR marc-matnr
DEFAULT 'A123' SIGN 'E'.

� To fill the default for all of the fields of the selection table use

SELECT-OPTIONS: s_matnr FOR marc-matnr
DEFAULT 'A123' TO 'B123'
OPTION NB SIGN 'I'.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 13 423
Figure 13.3 Selection Table for SELECT-OPTIONS Input Field

Figure 13.4 Value Range for Selection Table

You can populate default values dynamically in the selection table for the SELECT-

OPTIONS fields in the program in the INITIALIZATION event block. For details

regarding the INITIALIZATION event block, refer to Chapter 9.

Use the addition NO-EXTENSION to restrict the user to adding only one range in the

SELECT-OPTIONS input fields on the selection screen as follows:

SELECT-OPTIONS: s_matnr FOR marc-matnr NO-EXTENSION.

As a result, the button for multiple selections will not appear on the selection

screen, as displayed in Figure 13.5.

Chapter 13 Selection Screens424
Figure 13.5 SELECT-OPTIONS with Addition NO-EXTENSION

You can also use the addition NO INTERVALS to restrict the user to single field entry

for the selection table. The syntax for single field entry is as follows:

SELECT-OPTIONS: s_matnr FOR marc-matnr NO INTERVALS
S_werks FOR marc-werks.

As a result, S_MATNR-HIGH is not displayed on the selection screen, as shown in

Figure 13.6.

Figure 13.6 SELECT-OPTIONS with Addition NO INTERVALS

Similar to the PARAMETERS option, you use the addition MEMORY ID to GET/SET the

parameter ID for the selection screen. The addition OBLIGATORY is used to make the

LOW field a required field on the selection screen. Also, the option NO-DISPLAY is

used to hide the input field on the selection screen.

You can also modify the attributes of the screen element on the selection screen.

This feature is especially useful to hide or change the attributes of the logical data-

base selection screen within your custom program. You can modify the attribute

of both the PARAMETERS and SELECT-OPTIONS fields on the selection screen. The

event block AT SELECTION-SCREEN OUTPUT allows you to modify the selection

screen directly before it is displayed. In a simplified form, Listing 13.3 displays the

code to modify selection screen attributes.

REPORT ZDEMO_MODIF_SCREEN.
NODES: SPFLI, SFLIGHT.
AT SELECTION-SCREEN OUTPUT.
LOOP AT SCREEN.
IF SCREEN NAME = 'CARRID-HIGH'.

SCREEN-ACTIVE = '0'.
MODIFY SCREEN.

ENDIF.
ENDLOOP.

Listing 13.3 Modify Selection Screen Attribute
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 13 425
Without the code within the AT SELECTION-SCREEN OUTPUT event block, the selec-

tion screen for the program with a logical database appears as displayed in Figure

13.7, and with the code for the AT SELECTION-SCREEN OUTPUT, the selection screen

appears as displayed in Figure 13.8.

Figure 13.7 Selection Screen without Screen Modification

Figure 13.8 Selection Screen with Screen Modification

Texts on the selection screen are stored as selection text in the program text ele-

ments. These selection screen texts can then be translated into other languages.

The text elements for the program can be accessed from the program via the menu

path Goto • Text Elements • Selection Texts. Selection screen text can also be

derived from the ABAP Dictionary if the selection screen elements refer to data

types from the ABAP Dictionary as displayed in Figure 13.1. Figure 13.9 and Figure

13.10 show a selection screen and the selection texts for the selection screen in the

ABAP program.

Chapter 13 Selection Screens426
Figure 13.9 Selection Screen for the ABAP Report

Figure 13.10 Selection Screen Texts

The user can create a program selection screen variant to store the input values for

the selection screen. Selection screen variants are helpful if the user runs the pro-

gram with the same sets of input value. It saves time and effort. The variant is also

required if the program is scheduled to run in the background, so that the system

knows which value is to be used to run the program.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 13 427
The variant for the selection screen can be created in the ABAP Editor or from the

selection screen itself by clicking on the Save icon on the screen or via the menu

path Goto • Variants • Save as Variant. Figure 13.11 displays the variant attributes

screen.

Figure 13.11 Variant Attribute Screen

You can define a standard selection screen and any number of user-defined selec-

tion screens. The standard selection screen is called automatically when you start

the program, whereas the user-defined selection screen is called using the CALL

SELECTION-SCREEN statement in the program. The standard selection screen has

the default screen number 1000, whereas the user-defined screen can have any

screen number except 1000.

Formatting the Selection Screen

The selection screen defined by the PARAMETERS and SELECT-OPTIONS statements

has its own layout in which all of the PARAMETERS or SELECT-OPTIONS appear line by

line. The SELECTION-SCREEN statement allows you to specify your own formatting

options for the selection screen. You can define the layout of parameters and selec-

tion criteria and can display comments and underlines on the selection screen. In

addition, you can place buttons on the selection screen or application toolbar. The

formatting options can be used on the standard selection screen only if it has at

least one input field.

Use the BEGIN OF BLOCK <block> addition to group together logically related screen

elements and WITH FRAME to draw a frame around the logically related fields. You

Chapter 13 Selection Screens428
can nest frames to a depth of five levels. You should assign a heading to a block,

using the TITLE addition; the block heading can be a text element or a field name

up to eight characters long. Any block needs a SELECTION-SCREEN END OF BLOCK

addition to indicate where it ends.

Listing 13.4 displays the code for a design screen layout:

SELECTION-SCREEN BEGIN OF BLOCK a WITH FRAME TITLE text-001.
PARAMETERS: p_pc RADIOBUTTON GROUP a, "Local PC File

p_app RADIOBUTTON GROUP a, "Server File
P_lgfile TYPE fileintern, "Logical File
P_phfile TYPE fileintern. "Physical file

SELECTION-SCREEN END OF BLOCK a.

Listing 13.4 Code to Design Selection Screen Layout

Figure 13.12 displays the selection screen for the example in Listing 13.4.

Figure 13.12 Selection Screen Formatting

You can also display multiple parameters and comments on the same output line.

To do this you need to enclose them between SELECTION-SCREEN BEGIN OF LINE

and SELECTION-SCREEN END OF LINE. The COMMENT addition allows you to include

text in line. Comment text must always have a position and output length. You

can define the position using POS_LOW and POS_HIGH. These are the positions of the

lower and upper limits, respectively, of the field SELECT-OPTIONS on the selection

screen. You can use POSITION <POS> to position the cursor on a line for the next

output. This addition can only be used in between BEGIN OF LINE and END OF LINE.

Listing 13.5 displays the syntax to use the BEGIN OF LINE statement to design a

selection screen layout.

SELECTION-SCREEN BEGIN OF BLOCK a WITH FRAME TITLE text-001.
PARAMETERS: p_pc RADIOBUTTON GROUP a, "Local PC File

p_app RADIOBUTTON GROUP a. "Server File
SELECTION-SCREEN BEGIN OF LINE.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 13 429
SELECTION-SCREEN POSITION 4.
PARAMETERS p_logi RADIOBUTTON GROUP 0002 DEFAULT 'X'.
SELECTION-SCREEN COMMENT 7(30) text-004 FOR FIELD p_logi.
PARAMETERS: p_lgfile TYPE fileintern.
SELECTION-SCREEN END OF LINE.
SELECTION-SCREEN BEGIN OF LINE.
SELECTION-SCREEN POSITION 4.
PARAMETERS p_phy RADIOBUTTON GROUP 0002.
SELECTION-SCREEN COMMENT 7(30) text-005 FOR FIELD p_phy.
PARAMETERS: p_phfile LIKE rfpdo-rfbifile.
SELECTION-SCREEN END OF LINE.
SELECTION-SCREEN END OF BLOCK a.
SELECTION-SCREEN BEGIN OF BLOCK b WITH FRAME TITLE text-003.
PARAMETERS: p_check RADIOBUTTON GROUP c DEFAULT 'X', "check fl

p_procs RADIOBUTTON GROUP c. "Process the file
SELECTION-SCREEN END OF BLOCK b.

Listing 13.5 Code for Selection Screen Layout

Figure 13.13 displays the selection screen with the formatted layout.

Figure 13.13 Formatted Selection Screen

You can also add a blank line to the selection screen by using SELECTION-SCREEN

SKIP <n> or an underline by specifying SELECTION-SCREEN ULINE.

Selection Screen as Subscreen

It is also possible to define the selection screen as a subscreen in your ABAP pro-

gram, and then this selection screen can be included as a subscreen on a screen or

as part of a tab strip control on a selection screen. The system processes the events

AT SELECTION-SCREEN OUTPUT and AT SELECTION-SCREEN for each subscreen in

addition to processing the surrounding selection screen. Refer to Chapter 9 for

Chapter 13 Selection Screens430
more information regarding program events. You work with the system variable

SYST-DYNNR to determine which screen or subscreen is currently being processed.

If you have many input fields on the selection screen, it may be a good idea to

group together logically related screen elements in separate subscreens and dis-

play them as tab strips.

Listing 13.6 defines the selection screen as a subscreen and includes it as part of a

tab strip control.

SELECTION-SCREEN BEGIN OF SCREEN 110 AS SUBSCREEN.
SELECTION-SCREEN BEGIN OF BLOCK a WITH FRAME TITLE text-010.
SELECT-OPTIONS: s_carrid FOR spfli-carrid,

s_conn FOR spfli-connid.
SELECTION-SCREEN END OF BLOCK a.
SELECTION-SCREEN END OF SCREEN 110.
SELECTION-SCREEN BEGIN OF SCREEN 120 AS SUBSCREEN.
SELECTION-SCREEN BEGIN OF BLOCK b WITH FRAME TITLE text-011.
SELECT-OPTIONS: s_cntrfr FOR spfli-countryfr,

s_cityfr FOR spfli-cityfrom,
s_airpfr FOR spfli-airpfrom.

PARAMETERS: s_depdt LIKE sy-datum.
SELECTION-SCREEN END OF BLOCK b.
SELECTION-SCREEN END OF SCREEN 120.
SELECTION-SCREEN BEGIN OF SCREEN 130 AS SUBSCREEN.
SELECTION-SCREEN BEGIN OF BLOCK c WITH FRAME TITLE text-012.
SELECT-OPTIONS: s_cntrto FOR spfli-countryto,

s_cityto FOR spfli-cityto,
s_airpto FOR spfli-airpto.

PARAMETERS: s_retdt LIKE sy-datum.
SELECTION-SCREEN END OF BLOCK c.
SELECTION-SCREEN END OF SCREEN 130.
SELECTION-SCREEN BEGIN OF TABBED BLOCK tab_block FOR 10 LINES.
SELECTION-SCREEN TAB (20) tab1 USER-COMMAND comm1
DEFAULT SCREEN 110.

SELECTION-SCREEN TAB (20) tab2 USER-COMMAND comm2
DEFAULT SCREEN 120.

SELECTION-SCREEN TAB (20) tab3 USER-COMMAND comm3
DEFAULT SCREEN 130.

SELECTION-SCREEN END OF BLOCK tab_block.
INITIALIZATION.
tab1 = 'Connection'(010).
tab2 = 'Departure. City'(011).
tab3 = 'Arrival City'(012).
tab_block-activetab = 'COMM1'.
tab_block-dynnr = 110.

Listing 13.6 Example Code to Define Tab Strip Control for Selection Screen
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 13 431
Figure 13.14 displays the tab strips on the selection screen for the definition in Lis-

ting 13.6.

Figure 13.14 Tab Strips on the Selection Screen

You can use the optional addition NESTING LEVEL to further reduce the size of the

subscreen. You can use it to prevent scrollbars from appearing when you use the

subscreen in a tab strip control on the selection screen and the tab strip already

has a frame. Use NESTING LEVEL 0 if there is no frame around the tab strip control;

otherwise, for each frame around the tab strip control, increase the NESTING LEVEL

by one.

The tab strip control is defined by the following syntax:

SELECTION-SCREEN BEGIN OF TABBED BLOCK tab_block FOR 10 LINES.
SELECTION-SCREEN TAB (20) tab1 USER-COMMAND comm1
DEFAULT SCREEN 110.

SELECTION-SCREEN TAB (20) tab2 USER-COMMAND comm2
DEFAULT SCREEN 120.

SELECTION-SCREEN TAB (20) tab3 USER-COMMAND comm3
DEFAULT SCREEN 130.

SELECTION-SCREEN END OF BLOCK tab_block.

This defines a tab strip control, tab_block, with a size of 10 lines. tab1, tab2, and

tab3 are assigned to the tab area, and the length TAB (20) defines the width of the

tab title. You must also assign a function code to each of the tab titles. For each tab

title, the system automatically creates a character field with the same name in the

ABAP program. You can assign a text to this tab title variable before the selection

screen is displayed. The field can be assigned a value during the INITIALIZATION

event. The subscreen is assigned to each tab title and is displayed when the user

selects the tab.

For each tab area, the system automatically creates a structure with the same

name in the ABAP program. This structure has three components: PROG, DYNNR, and

Chapter 13 Selection Screens432
ACTIVETAB. You can assign a value to this structure dynamically to control the dis-

play of the tab strip. You can specify a value for ACTIVETAB and DYNNR to display a

particular subscreen or tab by default when the selection screen is first displayed.

Selection Screen Processing

The ABAP runtime controls the processing of the selection screen because you do

not have access to the flow logic of the selection screen. The ABAP runtime pro-

vides a number of selection screen events before the screen is displayed and after

the user action on the selection screen. You can write your own code to control the

display of the screen or to react to the user action on the selection screen.

Selection screen processing starts after the INITIALIZATION event. You can popu-

late the default value for the input field on the selection screen in the INITIALIZA-

TION event block. The INITIALIZATION event block is executed only once, even if

the selection screen is processed several times.

The event AT SELECTION-SCREEN OUTPUT allows you to dynamically modify the

screen before it is displayed or prepare the screen. Like PBO for a classical screen,

this event block is executed every time the screen is displayed, unlike the INI-

TIALIZATION event. The AT SELECTION-SCREEN OUTPUT event is triggered when you

click on the multiple selection button for the SELECT-OPTIONS input field, the

dynamic selection button, or the tab strip screens. You modify the screen attribute

in this event block. This event is specifically useful to modify the logical database

selection screen if you want to hide or change the attribute of the screen fields

without modifying the code of logical database selection screen.

User action on the selection screen results in events that are either used to validate

field input or possible entries or help request or trigger PAI processing of the selec-

tion screen.

The AT SELECTION-SCREEN event is triggered by the ABAP runtime after the user

selects Execute or presses (Enter) on the selection screen. The programmer can val-

idate the user input or action in the AT SELECTION-SCREEN event. You can trigger a

warning message in the AT SELECTION-SCREEN event based on your validation for

the screen field. A warning message is displayed, and after you press (Enter), all of

the fields will be ready for input. You can process this while the program is execut-

ing because it is just a warning message. Similarly, if the program has triggered an

error message in this event block, all of the fields will be ready for input, and the

program will expect you to enter a valid value on the input screen before it pro-

ceeds with the execution.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Important Terminology Chapter 13 433
The AT SELECTION-SCREEN ON <field_name> event can be used to validate a specific

input field <field_name>, and only that field will be ready for input if an error mes-

sage is triggered in the block. You can have an AT SELECTION-SCREEN ON event for

each of the input fields on the selection screen if you want to validate the user

input on each of the screens.

The event AT SELECTION-SCREEN ON BLOCK <block> is triggered again when the user

selects Execute, and this time the contents of all fields of the block are passed to

the ABAP program. You should use this for validating user input. All of the fields in

the block are ready for input again if an error message is triggered. You can control

the program flow or validate the user input for the input field within this block.

You have the following additional selection screen events:

� AT SELECTION-SCREEN ON RADIOBUTTON GROUP <grp>

This event is triggered when the user clicks on the Execute button on the screen,

and then the content of the radio button group is passed to the ABAP program.

You can validate the whole group and then, based on your validation, send an

error message. The radio button group is ready for input if an error message is

triggered as a result of validation within the event block.

� AT SELECTION-SCREEN ON HELP-REQUEST FOR <FIELD>

This event is triggered when the user calls the (F1) help on the selection screen.

You can develop your own help routine for this event. The ABAP Dictionary

help is displayed if no corresponding event block is defined for this event. You

normally want to see the help from the ABAP Dictionary if the input field refers

to the ABAP Dictionary data type.

� AT SELECTION-SCREEN ON VALUE-REQUEST FOR <Field>

This event is triggered when the user calls value help (F4) on the screen field.

The value help displays the possible values from the ABAP Dictionary if no cor-

responding event block for this event is developed; otherwise, it displays the

possible value from the event block. We want to see ABAP Dictionary help if the

input field refers to an ABAP Dictionary data type.

Important Terminology

You should have a good understanding of ABAP statements to create selection

screens and the statements for screen layout design.

You can use simple ABAP declarative statements such as PARAMETERS and SELECT-

OPTIONS to create input fields for selection screens. You can also use SELECTION-

Chapter 13 Selection Screens434
SCREEN statements to design selection screen layout. The selection screen events

allow you to control the display of a screen or react to user actions on screen. You

can also program (F1) help and possible (F4) values for input fields on the selec-

tion screen by programming the (F1) and value help in the event blocks AT SELEC-

TION-SCREEN ON VALUE-REQUEST and AT SELECTION-SCREEN ON HELP-REQUEST.

Practice Questions

The following practice questions will help you evaluate your understanding of the

topic. The questions shown are similar in nature to those found on the certifica-

tion examination. Although none of these questions will be found on the exam

itself, they allow you to review your knowledge of the subject. Select the correct

answers and then check the completeness of your answers in the following solu-

tion section. Remember that you must select all correct answers and only correct

answers on the exam to receive credit for the question.

1. What is the default selection screen number for the ABAP program?

� A. 1000

� B. 100

� C. 1100

� D. None of the above

2. You can have only one selection screen for an ABAP program.

� A. True

� B. False

3. What are the declarative statements used to define the selection? Select all

that apply.

� A. PARAMETERS

� B. SELECT-OPTIONS

� C. SELECTION-SCREEN

� D. None of the above
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Practice Questions Chapter 13 435
4. You use the addition OBLIGATORY to define the input field of a parameter as a

required field.

� A. True

� B. False

5. Which of the following statements are correct? Select all that apply.

� A. The SELECT-OPTIONS statement creates an internal table with a header line.

The internal table is also known as the selection table.

� B. The structure of the selection table created with SELECT-OPTIONS has four

components: SIGN, OPTION, LOW, and HIGH.

� C. You can use the addition NO-DISPLAY to hide the input field on the selection

screen.

� D. You can only specify default values for the LOW and HIGH fields of the

SELECT-OPTIONS input field.

6. Your selection screen can be modified at which event?

� A. AT SELECTION-SCREEN OUTPUT

� B. AT SELECTION-SCREEN

� C. AT SELECTION-SCREEN ON <field_name>

� D. None of the above

7. Which of the following statements regarding the event AT SELECTION-SCREEN

ON HELP-REQUEST FOR <FIELD> is correct?

� A. This event will display (F1) help for the input field on the selection screen.

� B. This event will display self-defined (F1) help for the input field programmed

in the event block and will override any help possibly defined in the ABAP Dic-

tionary for the field.

� C. None of the above.

Chapter 13 Selection Screens436
8. You can define multiple elements in a single line by defining the element

within the block SELECTION-SCREEN BEGIN OF LINE and SELECTION-SCREEN END

OF LINE.

� A. True

� B. False

9. The addition NO-EXTENSION for SELECT-OPTIONS will allow only one line in the

selection table.

� A. True

� B. False

10. The addition NO-INTERVALS for SELECT-OPTIONS will allow only single fields on

the selection screen.

� A. True

� B. False

11. You can define a selection screen as a subscreen or tab strip control.

� A. True

� B. False

Practice Question Answers and Explanations

1. Correct answer: A

The default selection screen number is 1000. You can define any number of

user-defined screens with other numbers.

2. Correct answer: B

You can have more than one selection screen within an ABAP program. You can

have one default selection screen and any number of user-defined selection

screens.

3. Correct answers: A, B, C

You use PARAMETERS and SELECT-OPTIONS to define the input fields on the selec-

tion screen, and you use the SELECTION-SCREEN statement to format the layout

of the selection screen.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Practice Question Answers and Explanations Chapter 13 437
4. Correct answer: A

You use the addition OBLIGATORY to define the input field PARAMETERS and

SELECT_OPTIONS as required fields.

5. Correct answers: A, B, C

The SELECT-OPTIONS statement creates an internal table with a header line. The

name of the internal table is the same as the SELECT-OPTIONS variable name.

The row type of the internal table is a structure with the four components: SIGN,

OPTION, LOW, and HIGH. You can hide the input field with the addition NO-DIS-

PLAY, and you can define default values for each of the structure components

of the selection table.

6. Correct answer: A

The selection screen can be modified in the event block AT SELECTION-SCREEN

OUTPUT.

7. Correct answer: A

The event AT SELECTION-SCREEN ON HELP-REQUEST FOR <FIELD> displays the (F1)

help for the input field. It displays (F1) help from the ABAP Dictionary if (F1)

help is not programmed in the event block.

8. Correct answer: A

You can define multiple elements on the same line by defining the elements

within the blocks SELECTION-SCREEN BEGIN OF LINE and SELECTION-SCREEN END

OF LINE.

9. Correct answer: A

The addition NO-EXTENSION for the SELECT-OPTIONS hides the button for multi-

ple selection. As a result, the user cannot specify more than one line for the

selection criteria.

10. Correct answer: A

The addition NO INTERVALS hides the second input field (HIGH) for the SELECT-

OPTIONS statement. As a result, a user can only enter a value for a single input

field (LOW) or range of value for the single input field. The user will see a single

input field, but he will get the button for multiple selection. When you select

the multiple selection dialog box, you can enter ranges, multiple ranges, multi-

ple single values, and so on.

11. Correct answer: A

You can define the selection screen with a subscreen or tab strip control using

the ABAP language declarative statement.

Chapter 13 Selection Screens438
Takeaway

You should be able to describe the use of selection screens in ABAP programming.

You need to understand how to define the selection screen and should know the

keywords and the syntax to define the selection screen. It is important to know the

formatting options available to design the selection screen layout and to know the

various events available for selection screens.

You should also be able to design standard selection screens, tab strips on selec-

tion screens, and subscreens for use on these tab strips within the ABAP program

and be able to dynamically modify or validate the user input on the screen or pro-

vide the possible entries for the fields within the appropriate event blocks.

Refresher

Table 13.2 shows the key concepts for selection screens.

You should now be able to design and use selection screens in ABAP program-

ming. You should know the syntax to define standard selection screens, sub-

screens, tab strip controls on the selection screen, and the various events to

validate user input or control the program flow. You should also know the ABAP

statements and syntax for selection screen layout formatting. You should now be

able to work with the selection screen design and use selection screens in the ABAP

program. This knowledge will allow you to easily pass this topic on the certifica-

tion examination.

Key Concept Definition

Selection screen A selection screen is an interface between the user and the pro-

gram. You can define a selection screen by using the ABAP lan-

guage declarative statements such as PARAMETERS and

SELECT-OPTIONS, and you can design the screen layout with

the declarative statement SELECTION-SCREEN without using

the Screen Painter or Menu Painter.

Selection screen events You can dynamically modify the selection screen during the AT

SELECTION-SCREEN OUTPUT event. You can validate the user

input on the AT SELECTION-SCREEN ON <FIELD> event for

each of the input fields on the screen, if required.

Tab strip control You can define subscreens for use on user-defined tab strip

controls on the selection screen with the ABAP language

declarative statements for screen design.

Table 13.2 Key Concepts Refresher

© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Chapter 14

ABAP Object-Oriented
Programming

Techniques You’ll Master:

� Understand object-oriented programming concepts

� Describe the components of an ABAP class

� Explain the visibility sections of a class

� Understand the most important components of a class: attri-

butes, methods, and events

� Create a local class definition and implementation, and a global

class

� Describe the difference between instance and static components

� Define the instance constructor and the class constructor meth-

ods for a class

Chapter 14 ABAP Object-Oriented Programming440
ABAP Objects is a complete set of object-oriented statements that has been intro-

duced with the ABAP language. ABAP Objects supports complete object-oriented

programming that includes definition of local and global classes, creation of

objects from classes, and specialization of classes via inheritance.

A class is the basis of an object-oriented programming language. A class is a tem-

plate for an object, which describes objects, and an object is the runtime instance

of that class. You need to define a class to use objects in the program. You can cre-

ate global and local classes in the ABAP language. Global classes are visible to every

program in the system and can be used by every program, whereas local classes are

visible to the program in which they are defined.

The main objective of this chapter is to provide you with the concepts of ABAP

object-oriented programming with ABAP Objects. We will discuss the concept of

ABAP classes because it is the foundation of ABAP object-oriented programming.

We will discuss the key components of ABAP classes such as attributes, methods,

and events and the concept of visibility in a class. We will cover in detail the syntax

to create local classes, attributes, methods, and events and the syntax to access

and use them in ABAP programs. We will also cover global classes and the steps to

create them. Finally, we will discuss class instantiation, various types of methods

and attributes, their visibility, and the syntax to create object access of individual

class and object components in the ABAP program, as well as the syntax to trigger

events and register handler methods.

Real-World Scenario

As a technical lead on a project, you have to explain the basics of object-ori-

ented programming to the developer in your team. Your development team

has to develop a Web Dynpro application and reports using ALV Grids and

use GUI control using a control framework and should be aware of ABAP

Objects techniques.

To use the techniques, you should have a good understanding of object-ori-

ented programming, ABAP class declaration, implementation, and the vari-

ous components of an ABAP class. You should be aware of encapsulation,

inheritance, polymorphism, and abstraction, and should be able to use these

concepts effectively in custom application development.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 14 441
Objectives of this Portion of the Test

The objective of this portion of the exam is to judge your knowledge about object-

oriented programming concepts. You are expected to be able to create ABAP

classes for use in your programs, both the definition part and the implementation

part, and to be able to use global classes for application development. You should

be able to explain the various components of an ABAP class and the visibility sec-

tions such as public, private, and protected sections. You should be able to create

ABAP Objects programs that contain all useful object-oriented programming tech-

niques.

Key Concepts Refresher

It’s important to understand the ABAP Objects concept because SAP is developing

new applications using the object-oriented programming techniques. This chapter

will introduce the basics of object-oriented programming concepts and the key

components required to create an ABAP class. The key components discussed in

this chapter are attributes, methods, and events. Advanced topics with regard to

ABAP Objects programming are covered in Chapter 17.

Object-Oriented Programming Concepts

Object-oriented programming involves programming using objects. Business

objects such as customers, materials, and purchase orders are examples of real-

world objects. The real-world objects have states and behaviors. For example, a

purchase order has states such as purchase order number, vendor number, and

purchasing organization and behaviors such as create purchase order, display pur-

chase order, and change purchase order. The goal of object-oriented programming

is to map the real-world object to a software object as accurately as possible. This

helps the business user and the developer communicate more effectively with

each other.

The state of the real-world object is represented by attributes, and the behavior of

the real-world object is represented by methods. A method is a block of code, such

as a function module or subroutine, associated with the object. Thus, a software

object consists of attributes and methods.

Object-oriented programming encapsulates attributes and methods and provides

a defined interface (methods) to access the attributes of the object. The outside

Chapter 14 ABAP Object-Oriented Programming442
world can communicate with the object using the defined interface. If you want to

access the attributes of the object, you call a method to do so, and this method has

parameters that determine what data you must pass in and what data you get back

from the method. The internal status of the object and its implementation is hid-

den from the outside world and cannot be modified or viewed. The attributes of

the object can only be changed by calling public methods of the object and cannot

be changed directly. You can change the attributes directly if they are public, but

usually the attributes are private, so they are usually changed by calling public

methods.

The object-oriented programming model supports following characteristics:

� Abstraction process

The abstraction process refers to mapping the real-world processes in a class as

accurately as possible. Abstraction is an essential element of object-oriented

programming and is achieved through the use of hierarchical classification. A

complex object can be broken into more manageable pieces. Each object

describes its own unique behavior.

� Encapsulation

The implementation of the class is hidden and can only be accessed by means of

the class interface; that is, by calling the methods of the class. The purpose of a

class is to hide complexity from the outside world. Each method and attribute

can be private or public. A public method can be accessed by an external user,

such as an ABAP program. The private attribute or methods can be accessed

directly only from within the class itself and can be accessed by an external

application through public methods only.

� Inheritance

Inheritance means deriving one class from another. The attributes and meth-

ods are inherited from the higher-level class, known as the superclass, and can

be extended; that is, the methods can be redefined, and new components can be

added. A class inherits the attributes and methods from the parent class and can

define new components that make it unique within its class hierarchy.

� Polymorphism

Polymorphism is where objects of different classes react in different ways to the

same method call. It can be achieved through inheritance or through the use of

interfaces.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 14 443
ABAP Objects

ABAP Objects is an objected-oriented extension of the ABAP language, and it is

now also the term used to refer to the entire ABAP language. ABAP Objects sup-

ports object-oriented programming techniques.

It basically consists of a set of ABAP statements that support object-oriented pro-

gramming such as definition of classes, creation of objects from classes, specializa-

tion of classes via inheritance, independent interfaces that can be used in classes,

and the event concept that is integrated into the language.

ABAP Class

Classes are the foundation of object-oriented programming. A class is a blueprint

or template for objects. A class describes an object, and the object is a runtime

instance of that class. You can create any number of objects based on a single class,

and each instance (object) of the class has its own unique identity and its own set

of values for its attributes.

Classes in ABAP Objects can be declared either locally within the application where

they are to be used or globally as repository objects. The advantage of creating

global classes is that they can be reused in many different applications. Global

classes are defined in the Class Builder (Transaction SE24) in the ABAP Workbench.

Global classes are stored centrally in the Repository. Global classes can be used by

any program in the SAP system. Local classes are defined locally in the ABAP pro-

gram and are visible in the program in which they are defined.

Local Classes

Local classes are defined within an ABAP program and can be used only in the pro-

gram in which they are defined. Listing 14.1 displays the most important compo-

nent of a local ABAP class in a code template. We will cover individual components

of the class, including the visibility concepts, in the following section.

CLASS CL1 DEFINITION.
PUBLIC SECTION.

DATA: d1, d2.
METHODS: M1.
EVENTS: EV1.

PROTECTED SECTION.
DATA: d3, d4.
METHODS: M2.

Chapter 14 ABAP Object-Oriented Programming444
EVENTS: EV2.
PRIVATE SECTION.
DATA: d5, d6.
METHODS: M3.
EVENTS: EV3.

ENDCLASS.
CLASS CL1 IMPLEMENTATION.
METHOD M1.
ENDMETHOD.
METHOD M2.
ENDMETHOD.
METHOD M3.
ENDMETHOD.

ENDCLASS.

Listing 14.1 Template for ABAP Class

A class definition consists of a declaration part and an implementation part. The

declaration part of the class is within the statement block CLASS ... ENDCLASS.

The following is the syntax for the class declaration:

CLASS <class_name> DEFINITION.
ENDCLASS.

The declaration part of the program contains the definition of all of the compo-

nents of the class. This includes attributes, methods, and events. Any methods

defined in the DEFINITION part must be implemented in the implementation sec-

tion of the class.

The methods of the class are implemented in the following statement block:

CLASS <class_name> IMPLEMENTATION.
METHOD metha.
ENDMETHOD.
METHOD methb.
ENDMETHOD.

ENDCLASS.

Each component of the class must be assigned to one of the following three visibil-

ity sections. All of the components are visible within the class. All components of

the class are in the same namespace, which means that all components of the class

must have a unique name.

The class components can be declared in three visibility areas: PUBLIC, PRIVATE,

and PROTECTED. When defining local classes in ABAP Objects, you must follow the

syntactical sequence of PUBLIC SECTION, PROTECTED SECTION, and PRIVATE SECTION.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 14 445
Global Classes

Global classes and interfaces are stored in a class library and are visible system-

wide. Global classes can be used by every program in the system. The Class Builder

allows you to create and maintain global classes and interfaces. You can use the

Class Browser to display global classes, interfaces, or business object types from

the class library. The Class Browser is an integrated part of Class Builder and can be

started via Transaction CLABAP.

To create a new global class, enter the name of the class on the initial screen of the

Class Builder (Transaction SE24) and select Create. The name of the class should

start with ZCL_<meaningful_name>. The Create Class dialog box appears with the

name of the class. Figure 14.1 displays the Create Class dialog box.

Figure 14.1 Create Global Class Dialog Screen

You need to populate the following details in the Create Class dialog box:

� Description

Enter a short text describing the class.

� Instantiation

Select the instantiation option. You have the option to select Public, Protected,

Private, or Abstract, as outlined next:

– Public

Usually you select the public instantiation. This means the user can create an

instance of this class with the CREATE OBJECT statement.

Chapter 14 ABAP Object-Oriented Programming446
– Protected

Protected instantiation specifies that only inherited classes or the relevant

class itself can create the instances of this class.

– Private

Private instantiation specifies that only the relevant class itself can create

instances of the class using its own method.

– Abstract

You select the abstract instantiation to define an abstract class. An abstract

class is used as a template to create a subclass. You cannot create an instance

of this class. You can access such a class with the static attribute or with its

subclasses.

� Class Type

You have the option to select Usual ABAP Class, Exception Class, Persistent Class,

or Test Class:

– Usual ABAP Class

This is the standard ABAP class and is discussed in this chapter.

– Persistent Class

The mapping of ABAP Objects classes to relational database tables is referred

to as object-relational mapping or O/R mapping. Classes with O/R mapping

are referred to as persistent classes.

– Exception Class

These are special classes used for class-based exception handling.

– Test Class

This is a test call and cannot be instantiated.

For our example, select the Usual ABAP Class radio button.

� Final

You can define the final class by selecting the checkbox. This means you cannot

create the subclass for this class.

� Only Modeled

If you select this option, the class is not stored in the class library, and you can-

not address it at runtime or test it.

Click on the Save button after you have entered the relevant details on the create

class dialog screen. You have to provide the package name after you click on the

Save button on the dialog screen. Then the class editor appears with the Method

tab selected. From here on you can define individual components of the class.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 14 447
Figure 14.2 displays the class editor screen that is displayed after you click on Save

on the Create Class dialog window.

Figure 14.2 Class Editor Screen to Create a Global Class

You can define individual components of the class such as attributes, methods,

events, friends, and so on in the class editor. We will discuss the definition of the

individual components later in the relevant sections in this chapter.

Class Visibility and Instantiation

The visibility sections define the visibility of the components of the class and

therefore the interface of the class to the application.

� Public section

All components declared within the public section can be accessed by any users

of the class. The methods of the class can also access the public components of

the class and any classes that inherit from it. The public components of the class

form the interface between the class and the user. The user can only access the

public components of the class.

� Private section

The components that are declared in the private section are only visible to the

method of the class and are only accessible from inside the class itself. You can

protect components against access from the outside by characterizing them as

private attributes. The private components are not visible to the outside user.

Using the private visibility section, you can hide or encapsulate the information

from the outside user. Changing the private component does not affect the out-

side user. As long as the class’s interface (public components) remains the same,

the outside user does not notice the changes in the class.

Chapter 14 ABAP Object-Oriented Programming448
� Protected section

All components declared in this section can be accessed by the method of the

class and the subclasses. Protected components represent the interface

between the class and its subclasses but are not the part of the interface

between the class and the outside world.

Listing 14.2 displays the declaration of the public, private, and protected compo-

nents of the class.

* CLASS vessel DEFINITION *

* Superclass definition *

CLASS vessel DEFINITION.
PUBLIC SECTION.

METHODS: constructor,
drive IMPORTING speed_up TYPE I,
get_id RETURNING value(id) TYPE I.

PROTECTED SECTION.
DATA: speed TYPE I,

max_speed TYPE I VALUE 100.
PRIVATE SECTION.

CLASS-DATA object_count TYPE I.
DATA id TYPE I.

ENDCLASS.

* CLASS vessel IMPLEMENTATION *

* Superclass implementation *

CLASS vessel IMPLEMENTATION.
METHOD constructor.

object_count = object_count + 1.
id = object_count.

ENDMETHOD.
METHOS drive.

speed = speed + speed_up.
IF speed > max_speed.

speed = max_speed.
ENDIF.

ENDMETHOD.
METHOD get_id.

id = me->id.
ENDMETHOD.

ENDCLASS

Listing 14.2 Public, Private, and Protected Components in a Class
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 14 449
External users of the class (e.g., an executable ABAP program) can only access the

public components. The private and protected components are invisible to the

external user and are therefore internal to the class or the class and its subclasses

in the case of protected components. This enables you to change the internal

implementation of the class without affecting the external user. By assigning the

components to the appropriate visibility section, you can determine which com-

ponents should be part of the user interface and which components should be

encapsulated.

For a global class, the visibility of individual components is specified in the class

editor. Figure 14.3 displays the visibility options in the class editor for methods.

Similarly, you have the option to specify visibility for other components of the

class.

Figure 14.3 Method Definition for Global Class with Visibility

In addition to specifying the visibility of the class components, you can also spec-

ify the instantiation type for the class. The instantiation type defines who can cre-

ate the objects of the class. The following are the three types of instantiation for

the class:

� Public instantiation

� Protected instantiation

� Private instantiation

The syntax to control the instantiation of a local class is as follows:

CLASS <class_names> DEFINITION
CREATE PUBLIC | PROTECTED | PRIVATE

ENDCLASS.

If you do not specify the instantiation for the class, then the class is publicly

instantiated by default. The user can use only publicly instantiated classes to cre-

ate objects for the class. Protected instantiated classes allow the creation of objects

in methods of subclasses. A class with private instantiation can create objects

Chapter 14 ABAP Object-Oriented Programming450
within the class itself, but nowhere else. Public instantiation classes normally pro-

vide a static component that can be accessed by the outside, which will provide the

reference to the object that the class itself created.

For the global class, you specify the instantiation type in the create class dialog

window as shown in Listing 14.2.

Instance and Static Components

In addition to the visibility, you must define whether the component is an

instance component or a static component. The instance components exist for

each instance of the class (one copy for each object), and they are independent of

each other. The static components exist once per class, no matter how many

instances of this class there are, and all objects of the class share this one copy. The

instance components are addressed using the reference variable pointing to the

object in question, whereas static components are addressed using the name of

the class to which they belong. You do not need to create an instance of the class

(object) to access the static components.

The syntax to define static components and instance components is the same

except that static component definitions begin with the CLASS keyword. For global

class definitions in the Class Builder, you must specify for each component

whether it’s a static component or an instance component. Figure 14.4 displays

instance and static components for a local class.

Figure 14.4 Instance and Static Components Declaration

Static method

Instance method

Static attribute

Instance attribute
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 14 451
For the global class, the instance and the static components are defined in the class

editor. Figure 14.3 displays the instance and static method definition for the global

class. Figure 14.5 displays the instance and static attributes definition for the global

class in the class editor.

Figure 14.5 Instance and Static Attribute Definition for a Global Class

Objects

Objects are instances of a class. A class contains the description of the object and

describes all characteristics that all objects of the class have in common. The pro-

cess of creating a discrete object or instance of a class in memory is called instanti-

ation. Objects are created using the syntax CREATE OBJECT ref_name, where ref_

name must be a suitable type of reference variable. The statement CREATE OBJECT

creates an object in the memory of the application.

The syntax to create the object is as follows, where CL_ARTICLE_HIERARCHY is a

global class:

DATA: ref_var TYPE REF TO cl_article_hierarchy.
START-OF-SELECTION.
CREATE OBJECT ref_var.

You can use global and local classes to create objects with the CREATE OBJECT state-

ment.

Attributes

Attributes are internal data objects within a class that can have any data type; for

example, ABAP types, types from the ABAP Dictionary, or references. The state of

the object is determined by the values of its attributes. Attributes can have local

Chapter 14 ABAP Object-Oriented Programming452
types, global data types, or reference data types. Figure 14.6 displays the attribute

declaration with the class.

Figure 14.6 Attribute Declaration in a Class

In classes, you can use the TYPE addition only when defining attributes. The LIKE

reference is allowed only for local data types of system variables such as SY-DATUM,

SY-UNAME, and so on. With TYPE REF TO, the attribute can be typed as a reference

variable. The reference type can be classes, interfaces, or types.

The READ-ONLY addition means that a public attribute that was declared with the

DATA statement can be read from outside but can only be changed by methods of

the same class. The READ-ONLY addition can be specified only in the public visibility

section of a class declaration or in an interface definition. The READ-ONLY attribute

for the global class can be specified in the class editor by selecting the Read-Only

checkbox for the attribute, as displayed in Figure 14.5, shown previously.

The syntax to declare a READ-ONLY attribute is as follows:

DATA: variable1 TYPE I READ-ONLY.
CLASS-DATA variable2 TYPE I READ-ONLY.

You can protect attributes against access from outside by declaring them as pri-

vate attributes.

� Private attributes

Private attributes cannot be addressed directly from outside the class and are

not visible to the outside user. The friendship concept is an exception to this

rule. You can find more information about the friendship concept in Chapter 17.

� Public attributes

Public attributes can be accessed directly by the outside user. The public com-

ponents of the class are sometimes collectively known as the class’s interface.

This includes the public attributes and methods.

Reference variable
references class

Private attribute

Static attribute
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 14 453
� Instance attributes

Instance attributes are defined with the DATA keyword and exist once per object.

The lifetime of an instance attribute is linked to the lifecycle of the object.

� Static attributes

Static attributes are defined with the CLASS-DATA keyword, and they exist once

per class, no matter how many instances there are for the class. They are visible

to all of the runtime instances of the class and usually contain information,

which applies to all instances of the class; for example, a counter for the total

number of objects. Static attributes are also referred to as class attributes.

In the Class Builder, you can simply enter the attributes and their properties in the

Attributes tab, as displayed in Figure 14.7, which displays the attributes definition

for a global class.

Figure 14.7 Attributes Definition for a Global Class

In addition to instance and static attributes, you can declare constant attributes,

whose values are defined during declaration and cannot be changed afterward.

Use the following syntax to declare a constant attribute in a local class:

CONSTANTS: const1 TYPE C VALUE 'A'.

The constant attribute is accessed with the following syntax:

WRITE: / ZCL_DEMO=>const1.
WRITE: / class_name=>constant.

Methods

Methods are internal procedures in a class that define the behavior of an object. In

other words, they are the blocks of code that contain the logic. Methods can access

all attributes of the class and therefore can change the values of the attributes of

Chapter 14 ABAP Object-Oriented Programming454
the object. The private attributes of the class can only be changed by the method of

the same class.

Methods are declared in the DEFINITION section for the local class and in the class

editor for the global class. Figure 14.3, shown previously, displays the method defi-

nition for the global class in the class editor. All methods declared in the declara-

tion part must be implemented in the implementation part of the class. Methods

must be assigned to a visibility section, just like attributes. Methods assigned to

the PUBLIC SECTION can be called from outside the class, whereas the methods

assigned to the PRIVATE SECTION can be called only within the same class.

Like the attributes of the class, you can declare instance methods or static methods.

Instance methods are declared using the METHODS statement, whereas the static

methods are declared using the CLASS-METHODS statement. Instance methods can

access all of the attributes of the class (i.e., both instance and static) and can trigger

all events of the class. Static methods can access only the static attributes of the

class and can trigger only static events. Static methods can be called without

instantiating the class, whereas instance methods are valid for the specific

instance of the class. Hence, you need to instantiate the class (CREATE OBJECT) to

access the instance method.

Static methods are defined at the class level. They can be directly accessed through

the class and do not need an instance. Static methods can be accessed by all of the

instances of the class and from outside the class (as long as they are public). You

have to create an object of the class to call an instance method. Both instance

methods and static methods are implemented in the implementation part of the

class.

The instance and static methods are implemented between the following state-

ment block:

CLASS lcl_class IMPLEMENTATION.
METHOD method_name.
ENDMETHOD.

ENDCLASS.

The method statement does not require any additions because the properties and

signature of the method are defined in the declaration part of the class. Listing 14.3

and Listing 14.4 display the declaration and the implementation of the methods.

CLASS c_team DEFINITION.
PUBLIC SECTION.

TYPES: biker_ref TYPE REF TO c_biker,
biker_ref_tab TYPE STANDARD TABLE OF biker_ref

WITH DEFAULT KEY,
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 14 455
BEGIN OF status_line_type,
flag(1) TYPE C,
text1(5) TYPE C,
id TYPE I,
text2(7) TYPE C,
text3(6) TYPE C,
gear TYPE I,
text4(7) TYPE C,
speed TYPE I,

END OF status_line_type.
CLASS-METHODS: class_constructor. "Static Attribute
METHODS: constructor,

create_team,
selection,
execution.

PRIVATE SECTION.
CLASS-DATA: team_members TYPE I,

counter TYPE I.
DATA: id TYPE I,

status_line TYPE status_line_type,
status_list TYPE SORTED TABLE OF status_line_type

WITH UNIQUE KEY id,
biker_tab TYPE biker_ref_tab,
biker_selection LIKE biker_tab,
biker LIKE LINE OF biker_tab.

METHODS: write_list.
ENDCLASS. "c_team DEFINITION

Listing 14.3 Declaration of Method in a Local Class

CLASS c_team IMPLEMENTATION.

METHOD class_constructor.
tit1 = 'Team members ?'.
CALL SELECTION-SCREEN 100 STARTING AT 5 3.
IF sy-subrc NE 0.

LEAVE PROGRAM.
ELSE.

team_members = members.
ENDIF.

ENDMETHOD. "class_constructor

METHOD constructor.
counter = counter + 1.
id = counter.

ENDMETHOD. "constructor

METHOD create_team.
DO team_members TIMES.

CREATE OBJECT biker
EXPORTING

Chapter 14 ABAP Object-Oriented Programming456
team_id = id
members = team_members.

APPEND biker TO biker_tab.
CALL METHOD biker->status_line
IMPORTING

line = status_line.
APPEND status_line TO status_list.

ENDDO.
ENDMETHOD. "create_team
METHOD selection.

CLEAR biker_selection.
DO.

READ LINE sy-index.
IF sy-subrc <> 0. EXIT. ENDIF.
IF sy-lisel+0(1) = 'X'.
READ TABLE biker_tab INTO biker INDEX sy-index.
APPEND biker TO biker_selection.

ENDIF.
ENDDO.
CALL METHOD write_list.

ENDMETHOD. "selection

METHOD execution.
CHECK NOT biker_selection IS INITIAL.
LOOP AT biker_selection INTO biker.

CALL METHOD biker->select_action.
CALL METHOD biker->status_line
IMPORTING

line = status_line.
MODIFY TABLE status_list FROM status_line.

ENDLOOP.
CALL METHOD write_list.

ENDMETHOD. "execution

METHOD write_list.
SET TITLEBAR 'TIT'.
sy-lsind = 0.
SKIP TO LINE 1.
POSITION 1.
LOOP AT status_list INTO status_line.

WRITE: / status_line-flag AS CHECKBOX,
status_line-text1,
status_line-id,
status_line-text2,
status_line-text3,
status_line-gear,
status_line-text4,
status_line-speed.

ENDLOOP.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 14 457
ENDMETHOD. "write_list

ENDCLASS. "c_team IMPLEMENTATION

Listing 14.4 Implementation of Methods in a Local Class

Methods have interface parameters, sometimes known as signatures, that enable

them to receive values when they are called and pass values back to the calling pro-

gram. They can also have exceptions. Methods can have any number of EXPORTING,

IMPORTING, and CHANGING parameters, which are mutually exclusive. All parame-

ters of these categories can be passed by value or reference.

Listing 14.5 displays the method declaration and implementation with EXPORTING

and IMPORTING parameters.

CLASS counter DEFINITION.
PUBLIC SECTION.
METHODS: set IMPORTING value(set_value) TYPE I,

increment,
get EXPORTING value(get_value) TYPE I.

PRIVATE SECTION.
DATA count TYPE I.

ENDCLASS.

CLASS counter IMPLEMENTATION.
METHOD set.
count = set_value.

ENDMETHOD.
METHOD increment.
ADD 1 TO count.

ENDMETHOD.
METHOD get.
get_value = count.

ENDMETHOD.
ENDCLASS.

Listing 14.5 Class Definition and Implementation

Figure 14.8 displays the method definition in the Class Builder, and Figure 14.9 dis-

plays the EXPORTING and IMPORTING parameters for the method in the Class

Builder.

Chapter 14 ABAP Object-Oriented Programming458
Figure 14.8 Method Definition for a Global Class

Figure 14.9 Exporting and Importing Parameter for a Method of the Class
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 14 459
A single return value for the method can be defined using a RETURNING parameter.

Methods that have a RETURNING parameter are called functional methods. If a

method has a RETURNING parameter, there can be no EXPORTING or CHANGING

parameters, and the method will pass back one thing and one thing only to the

caller.

The RETURNING parameter must always be passed by value and is passed with the

addition VALUE. The return value must be fully typed using the addition TYPING,

and you cannot use generic ABAP types to specify the return type. More informa-

tion about functional methods can be found in Chapter 17. All input parameters,

such as IMPORTING and CHANGING, can be defined as optional using the OPTIONAL

addition. You can also use the DEFAULT addition to assign a default value. These

parameters do not necessarily have to be transferred when the method is called.

The DEFAULT addition always allows you to specify a default value.

Methods can set the system return code SY-SUBRC if they raise an exception, but

only if the exceptions raised by the method are classic exceptions, as opposed to

class-based exceptions. You can identify the type of exception used by the method

in the Class Builder by placing the cursor on the method in the Method tab and

then clicking on the Exceptions button in the Class Builder screen. For class-based

exceptions the Exception Classes checkbox is selected; otherwise, the exception

defined for the method is a classic one. Figure 14.10 displays the exception for the

classic exception for the method.

Figure 14.10 Classic Exception for the Method of the Global Class

Class-based exceptions are raised by either the RAISE EXCEPTION statement or the

runtime environment. To propagate an exception from a method, you generally

use the RAISING addition when you are defining the method interface. You can

specify the RAISING addition directly when you define the methods of local classes.

Chapter 14 ABAP Object-Oriented Programming460
The syntax to define a method with the RAISING addition is as follows:

METHODS m1 IMPORTING ... EXPORTING ... RAISING cx_excep ...

There are two special methods that you may find in a class: CONSTRUCTOR and

CLASS_CONSTRUCTOR.

� The CONSTRUCTOR method (sometimes referred to as the instance constructor) is

called automatically when you create an object to set a starting value for the

new object. The instance constructor is called once per object, for every object.

Each class can have no more than one CONSTRUCTOR method, and the construc-

tor method must always be defined in the public visibility section. The con-

structor signature can only have importing parameters and exceptions. The

instance is not created if an exception for the constructor is raised. Usually, you

set the value of the attribute, validations, incrementing counter for the object,

and so on in the CONSTRUCTOR.

The syntax to pass parameters to the constructor is as follows, where p1 and p2

are the parameters for the constructor:

DATA: ref_var TYPE REF TO zcl_demo.
START-OF-SELECTION.
CREATE OBJECT ref_var EXPORTING p1 = 10 p2 = 20.

� The static constructor (sometimes also referred to as the class constructor) is a

special method in the class and is always named CLASS_CONSTRUCTOR. Each class

can have only one static constructor, and it must be assigned to the public visi-

bility section. The static constructor cannot have any importing parameters or

exceptions, and it cannot be called explicitly. It is called when you access the

class for the first time. It is executed no more than once per class, and it can be

triggered by creating an instance, accessing a static attribute, calling a static

method of the class, or registering an event handler method for an event in the

class.

� As of SAP NetWeaver 7.0 EHP 2, the method statement can be used to declare an

instance constructor in all visibility sections (i.e., public, private, or protected).

The statement METHODs Constructor for the declaration of the instance con-

structor of a local class can be listed in all visibility sections that are of general

instantiability or of the instantiability used in the CREATE addition. For global

classes, only a declaration in the public visibility section is feasible.

Instance methods are called using CALL METHOD ref->method_name, or you can drop

the CALL METHOD statement and call the method using the syntax ref->method_

name(), where ref is the name of the reference variable pointing to the object

(instance of the class), and the method name is the object method separated by the
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 14 461
instance component selector (->). You can omit the reference variable ref point-

ing to the object when calling an instance method from within another instance

method.

A shorter syntax to call a method is supported as of release 6.10. In this case, CALL

METHOD is omitted, and the parameters are listed in parentheses; for example, you

can call an instance method using the ref->method_name() statement if the

method does not have any parameters. It is important to note that there must be

no space before the parentheses.

Listing 14.6 displays the syntax to call an instance method within a program.

REPORT demo_class_counter.

* CLASS counter DEFINITION

CLASS counter DEFINITION.

PUBLIC SECTION.
METHODS: set IMPORTING value(set_value) TYPE I,

increment,
get EXPORTING value(get_value) TYPE I.

PRIVATE SECTION.
DATA count TYPE i.

ENDCLASS. "counter DEFINITION

* CLASS counter IMPLEMENTATION

*

CLASS counter IMPLEMENTATION.

METHOD set.
count = set_value.

ENDMETHOD. "set
METHOD increment.
ADD 1 TO count.

ENDMETHOD. "increment
METHOD get.
get_value = count.

ENDMETHOD. "get
ENDCLASS. "counter IMPLEMENTATION

DATA number TYPE I VALUE 5.
DATA cnt TYPE REF TO counter.
START-OF-SELECTION.

CREATE OBJECT cnt.
CALL METHOD cnt->set

Chapter 14 ABAP Object-Oriented Programming462
EXPORTING
set_value = number.

DO 3 TIMES.
CALL METHOD cnt->increment.

ENDDO.
CALL METHOD cnt->get

IMPORTING
get_value = number.

WRITE number.

Listing 14.6 Calling Instance Methods

Similarly, static methods are called using the syntax CALL METHOD class_name=

>method_name. The syntax consists of the class name and the name of the method

separated by the static component selector (=>). Like static attributes, static meth-

ods are addressed with their class name because they do not need instances of the

class. You can omit the class name when calling the static method from within the

class, or you can use the shorter syntax to call the method, in which the CALL

METHOD prefix is omitted and the parameters are placed in parentheses as men-

tioned previously.

Use the following syntax to call a method with EXPORTING, IMPORTING, and CHANG-

ING parameters:

CALL METHOD oref->method_name
EXPORTING im_par = exp_val ...
IMPORTING exp_par = im_val ...
CHANGING ch_par = chg_val ...
RECEIVING re_par = res_val ...
EXCEPTIONS exception = re_val ...

The shorter syntax to call a method is as follows:

oref->method_name(
EXPORTING im_par = exp_val ...
IMPORTING exp_par = im_val ...
CHANGING ch_par = chg_val ...
RECEIVING re_par = res_val ...
EXCEPTIONS exception = re_val ...)

You can omit the EXPORTING parameter when you call the method that has only

the import parameters.

Note

It is important to know that ABAP Objects does not provide a destructor method

for the class, as in some other object-oriented programming languages.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 14 463
Events

Events are another component of the class, along with attributes and methods.

Objects or classes can trigger events, and other objects or classes can react to those

events through special event handler methods. When an event is triggered, any

number of handler methods can be called. These methods are not called explicitly;

instead, the runtime system calls the handler methods, one by one, when the

event is triggered. The definition of the handler method determines to which

event it will react. You can declare handler methods in as many different classes as

necessary.

To trigger an event, the class must declare the event in the definition part and trig-

ger the method in one of the methods of the same class. You can define a static

event or an instance event. Instance events are defined using the EVENTS state-

ment, whereas any static events are defined using the CLASS-EVENTS statement.

Events are triggered by using the RAISE EVENT statement in a method of the class.

The event can have exporting parameters that must be passed by value only. You

use these if you want to pass the handler method some information that it may

need. When an event is triggered, the reference to the triggering object is always

available through the predefined importing parameter SENDER. By using this

parameter, you can place a reference to the event trigger object in the handler

method. The SENDER parameter is not explicitly defined but can always be

imported by the handler method.

Instance events can be triggered by an instance of the class (objects), whereas

static events can be triggered by the class itself. You can trigger both static events

and instance events from instance methods, whereas only static events can be

triggered from static methods.

Events are also subject to the visibility concepts discussed above. You can assign

events to a visibility section similar to other components of the classes. Events can

be assigned to either the public, protected, or private sections. The visibility of the

events determines where the event can be handled. An event defined in the public

section can be handled in the public method; an event defined in the protected

section can be handled by the class itself or its subclasses, whereas events defined

in the private section can be handled only within the class itself.

Listing 14.7 displays the definition and the implementation of an event.

* CLASS counter DEFINITION
*---

Chapter 14 ABAP Object-Oriented Programming464

CLASS counter DEFINITION.
PUBLIC SECTION.

METHODS increment_counter.
EVENTS critical_value EXPORTING value(excess) TYPE I.

PRIVATE SECTION.
DATA: count TYPE I,

threshold TYPE I VALUE 10.
ENDCLASS. "counter DEFINITION

* CLASS counter IMPLEMENTATION

CLASS counter IMPLEMENTATION.
METHOD increment_counter.

DATA diff TYPE I.
ADD 1 TO count.
IF count > threshold.

diff = count – threshold.
RAISE EVENT critical_value EXPORTING excess = diff.

ENDIF.
ENDMETHOD. "increment_counter

ENDCLASS. "counter IMPLEMENTATION

* CLASS handler DEFINITION

CLASS handler DEFINITION.
PUBLIC SECTION.

METHODS handle_excess FOR EVENT critical_value OF counter
IMPORTING excess.

ENDCLASS. "handler DEFINITION

* CLASS handler IMPLEMENTATION

*

CLASS handler IMPLEMENTATION.
METHOD handle_excess.

WRITE: / 'Excess is', excess.
ENDMETHOD "handle_excess

Listing 14.7 Event Declaration and Implementation

For the global class, the event is defined on the Events tab of the class editor, and

the event handler method is defined in the Methods tab, whereby you can specify

additional attributes for the method by selecting the Detail view icon. Figure 14.11
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 14 465
displays the event definition in the Class Builder, and Figure 14.12 displays the

event handler method definition.

Figure 14.11 Event Definition in a Global Class

Figure 14.12 Event Handler Method Definition

When the event is triggered, the handler methods registered to this event are

called in the sequence in which they were registered. Only the handler methods

registered for the triggering event is started after the event is triggered. You can

define any number of handler methods for an event. The handler methods can be

Chapter 14 ABAP Object-Oriented Programming466
defined in the same class or (usually) another class. The event handler methods are

not called directly by the client; instead, the runtime system calls the handler

method automatically after the event has been triggered. The link between the

event and the handler method is established dynamically in the program by using

the SET HANDLER statement. Registration is only active at program runtime.

The syntax to register the handler method is as follows:

SET HANDLER oref1->event_handler1.

Or you can register several handler methods with one statement as follows:

SET HANDLER evt_handler1 evt_handler2 FOR ALL INSTANCES.

Hence, to handle an event, a method must be defined as an event handler method

and must be registered at runtime for the event. Listing 14.8 displays the handler

method definition and implementation and event handler registration at run-

time. If the event contains the exporting parameters, then the handler method sig-

nature should contain the IMPORTING parameters in the definition. The handler

method signature should contain IMPORTING parameters equal to the EXPORTING

parameters of the events.

* CLASS counter DEFINITION

CLASS counter DEFINITION.
PUBLIC SECTION.

METHODS increment_counter.
EVENTS critical_value EXPORTING value(excess) TYPE I.

PRIVATE SECTION.
DATA: count TYPE I,

threshold TYPE I VALUE 10.
ENDCLASS. "counter DEFINITION

* CLASS counter IMPLEMENTATION

CLASS counter IMPLEMENTATION.
METHOD increment_counter.

DATA diff TYPE I.
ADD 1 TO count.
IF count > threshold.

diff = count – threshold.
RAISE EVENT critical_value EXPORTING excess = diff.

ENDIF.
ENDMETHOD. "increment_counter
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Practice Questions Chapter 14 467
ENDCLASS. "counter IMPLEMENTATION

* CLASS handler DEFINITION

CLASS handler DEFINITION.

PUBLIC SECTION.
METHODS handle_excess FOR EVENT critical_value OF counter

IMPORTING excess.
ENDCLASS. "handler DEFINITION

* CLASS handler IMPLEMENTATION

CLASS handler IMPLEMENTATION.

METHOD handle_excess.
WRITE: / 'Excess is', excess.

ENDMETHOD. "handle_excess
DATA: r1 TYPE REF TO counter,

h1 TYPE REF TO handler.
START-OF-SELECTION.

CREATE OBJECT: r1, h1.
SET HANDLER h1->handle_excess FOR ALL INSTANCES.
DO 20 TIMES.
CALL METHOD r1->increment_counter.

ENDDO.

Listing 14.8 Event Handler Declaration, Implementation, and Registration

If several methods are registered to one event, they are called in the sequence in

which they were registered.

Practice Questions

The following practice questions will help you evaluate your understanding of the

topic. The questions shown are similar in nature to those found on the certifica-

tion examination. Although none of these questions will be found on the exam

itself, they allow you to review your knowledge of the subject. Select the correct

answers and then check the completeness of your answers in the following solu-

tion section. Remember that you must select all correct answers and only correct

answers on the exam to receive credit for the question.

Chapter 14 ABAP Object-Oriented Programming468
1. Which of the following statements are true? Select all that apply.

� A. Static attributes can be declared only in the private visibility section of the

class.

� B. Static attributes are declared with the CLASS-DATA statement.

� C. A static attribute is the same across all instances of the class. There is only

one static attribute across all instances of the class.

� D. Static attributes cannot be changed by an object.

2. Private components of the class cannot be addressed directly from outside the

class except when the friendship concept applies.

� A. True

� B. False

3. Subclasses can access the private components of the parent class.

� A. True

� B. False

4. Subclasses inherit all the components of the parent class.

� A. True

� B. False

5. Public methods can access the private attributes of the same class.

� A. True

� B. False

6. Protected attributes can be accessed by methods of the class and its sub-

classes.

� A. True

� B. False

7. You cannot use the LIKE statement to define an attribute in a class.

� A. True

� B. False
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Practice Questions Chapter 14 469
8. The READ-ONLY addition for the attribute declaration can be used in the private

and public visibility section.

� A. True

� B. False

9. The READ-ONLY attribute cannot be addressed outside the class.

� A. True

� B. False

10. Which of the following statements are correct? Select all that apply.

� A. Class methods assigned to the public visibility section can be accessed out-

side the class using the static component selector and the class name.

� B. Static methods can be defined in both the public and private visibility sec-

tion of the class.

� C. Only public methods can be addressed outside the class.

� D. You can call private methods within the public methods without reference

to the object or class.

� E. None of the above

11. The constructor method is called automatically when you create an instance

of the class.

� A. True

� B. False

12. The class constructor method is called automatically when you access the

class for the first time.

� A. True

� B. False

13. The constructor method is always defined in the private visibility section of

the class.

� A. True

� B. False

Chapter 14 ABAP Object-Oriented Programming470
14. You can call the constructor method directly.

� A. True

� B. False

15. Object or class events can trigger any number of handler methods.

� A. True

� B. False

16. In a local class, it is possible to declare an instance constructor in all visibility

sections of the class.

� A. True

� B. False

17. Declaration of an internal table with a header line can be used in a class imple-

mentation.

� A. True

� B. False

Practice Question Answers and Explanations

1. Correct answers: B, C

Static attributes can be defined in the private and public visibility sections of

the class. Static attributes are defined with the CLASS-DATA statement in the

definition part of the class. Static attributes exist once per class and are the

same for all of the runtime instances of the class. If you change the static attri-

bute of the class, this change will apply for all of the instances of the class. Static

attributes can be changed by an instance of the class. All of the objects of the

class can access the static attribute of the class.

2. Correct answer: A

Private attributes cannot be addressed outside the class, but a class that is a

friend overrides this principle and can access the private attributes of the class.

3. Correct answer: B

Subclasses inherit all components of the parent class but can only directly

access public and protected components. However, the class also inherits the
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Practice Question Answers and Explanations Chapter 14 471
public methods from the superclass, which will indirectly allow access to the

inherited private attributes. If a subclass inherits a private component, this pri-

vate component cannot be accessed directly. Private means private; this is why

we have protected sections—so that when we have a subclass, it can access

inherited components.

4. Correct answer: A

The subclass inherits all components from the superclass but can then add

additional components or can redefine inherited methods. Refer to Chapter 17

for more information on this.

5. Correct answer: A

Public methods can access all of the attributes of the class.

6. Correct answer: A

Protected components can be accessed by the class and subclass. They cannot

be addressed directly outside the inheritance tree.

7. Correct answer: B

The LIKE statement is allowed only for local data objects (for example, within a

method) or system variables.

8. Correct answer: B

READ-ONLY attributes are defined in the public section and can be accessed out-

side the class. The value of the READ-ONLY attributes cannot be changed.

9. Correct answer: B

READ-ONLY attributes can be addressed outside the class since they are specified

in the public visibility section of the class. The READ-ONLY attributes can be

changed by the method of the same class.

10. Correct answers: A, B, C, D

These are correct for the following reasons:

– Class methods or static methods assigned to the public visibility section of

the class can be accessed outside the class with reference to the class because

you do not need to instantiate the class to be able to work with them.

– Static methods can be defined in both the public and the private visibility sec-

tion of the class. You can access the static public methods outside the class,

but not the static methods assigned to the private visibility section.

– Only the methods assigned to the public visibility section can be addressed

outside the class.

– Private methods of the class can be called within the public methods of the

same class without reference to the class or object.

Chapter 14 ABAP Object-Oriented Programming472
11. Correct answer: A

The constructor method is called automatically every time you instantiate the

class (that is, every time a new object is created).

12. Correct answer: A

The class constructor method is called automatically when you access the class

for the first time (that is, when creating an object, calling a static method, and

so on).

13. Correct answer: B

The constructor method and the class constructor method are always defined

in the public visibility section.

14. Correct answer: B

You cannot call the constructor method directly; it is called automatically.

15. Correct answer: A

When an instance or class event is triggered, any number of handler methods

can be called. Only the handler methods registered for the triggering event are

called when the event is triggered.

16. Correct answer: A

As of release 7.0 EHP 2, it is possible to declare an instance constructor in all vis-

ibility sections of the class.

17. Correct answer: B

An internal table with the header line cannot be used in the class implementa-

tion.

Takeaway

You should be able to explain the basic object-oriented programming concepts.

You should be able to explain the key components of an ABAP class such as attri-

butes, methods, and events and be able to use them for object-oriented applica-

tion development. You should be able to differentiate between instance

components and static components. By now you should also have a good under-

standing of the visibility concepts in ABAP Objects and be able use them appropri-

ately to create an ABAP class.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Takeaway Chapter 14 473
Refresher

Table 14.1 shows key concepts for ABAP Objects.

In this chapter you learned basic object-oriented programming concepts. You

learned the concepts of the ABAP class because it is the foundation for ABAP

object-oriented programming. You know the basic components of ABAP classes,

both local and global, and have learned about the visibility concepts, instance and

static components, and their syntax. You also learned about events and how to

trigger and register handler methods. You should now be able to create local and

global classes and use them to write programs using ABAP Objects. Your knowl-

edge about ABAP Objects will enable you to answer ABAP Objects-related ques-

tions and successfully pass this section of the test.

Key Concept Definition

Class A class is an abstract description of an object. A class is a template or a

blueprint based on which all of the objects are created.

Attribute Attributes are the global data of the class. The state of the object is

determined by the content of its attributes. You can have attributes

assigned to the public, protected, and private visibility sections of the

class. You can also define static and instance attributes for the class.

Method Methods are internal procedures that determine the internal behavior of

the class. Methods can access all of the attributes of the class and hence

can change the data content of the attributes. You can assign methods

to the public, protected, and private visibility sections of the class. You

can also define static or instance methods for the class.

Event You can define events in the class to trigger event handler methods in

other classes. Only handler methods registered for the triggering event

are called when the event is triggered. Events can be assigned to the

public, protected, or private visibility sections of the class. Similarly, you

can define static or instance events in the class. Events are triggered

using the RAISE EVENT statement, and the handler methods are regis-

tered using the SET HANDLER statement.

Object An object is an instance of a class. The class describes all of the generic

characteristics of the object. An object is created using the CREATE

OBJECT statement.

Table 14.1 Key Concept Refresher

© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Chapter 15

ALV Grid Control

Techniques You’ll Master:

� Identify the major functions of the ALV Grid

� Understand how to produce a full-screen ALV

� Explore how to produce an ALV within a container

� Handle events triggered by the ALV

Chapter 15 ALV Grid Control476
The ABAP List Viewer (ALV) has been available since release 4.5A. With release 4.6C

it was renamed the SAP List Viewer, but the acronym ALV remained. The list

viewer is rendered on the presentation server, which differentiates it from a report

you produce using WRITE statements. You use a container control on the presenta-

tion server to produce the ALV.

This chapter will provide you with a basic understanding of how ALV Grid Controls

are produced. We will examine both versions of the class-based ALV and identify

major differences between them. We will cover the techniques to produce a full-

screen ALV and an ALV within a container. We will also cover how to handle events

triggered by the ALV for processing within our program.

Real-World Scenario

You have been asked to explain how to program a report using an ALV to

newly hired programmers, who have never used ALV Grids.

It is your responsibility to explain both the old and new class-based tech-

niques to create an ALV Grid. You need to provide an understanding of the

basic methods to create a full-screen display used in your company’s report-

ing and within dialog screens used in your company’s programs to display

multiple lists on a single screen. To do this, you need to explain the two

classes used to produce ALV Grids and the process of placing an ALV into a

container.

Because management often wants the data to be presented in the ALV in a

specific way (let’s say they want a different column heading, or an order that

does not correspond to the field structure found in the ABAP Dictionary),

you must also explain how to change the display of an ALV programmati-

cally.

Objectives of this Portion of the Test

The purpose of this portion of the certification examination is to verify that you

have an understanding of the ALV. This portion of the examination will test your

knowledge of a number of topics. The points you will need to understand from this

section include the following:
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 15 477
� How to handle events triggered from the ALV; what steps are necessary to

receive the events for processing

� The creation of a full-screen ALV because many customers prefer ALV reports

because of their flexibility (sorting, filtering, or reordering columns) for the end

user of the report

� The creation of an ALV within a container, which is useful for Dynpro display of

data

� How to modify the display of an ALV (in other words, changing the initial dis-

play to match customer requirements)

The certification examination will give minimal weight to this chapter compared

to all of the other topics in the examination. This means this chapter is among

those for which the percentage of questions related to the topic is smaller than

most other chapters. An ALV can be produced simply. It is only when you modify

the display of an ALV that it becomes more complicated. We believe that owing to

its normally simple production, it does not require as much specialized knowledge

as other areas and is therefore not given as much weight on the examination.

Note

The ALV Object Model has been available since SAP NetWeaver 6.40, but the certi-

fication examination could include questions on the older ALV that was imple-

mented on the basis of the global class CL_GUI_ALV_GRID. In the future, the

exam may change to include questions on only the newer technique, but at pres-

ent you will need to be prepared for questions on both, and therefore we will dis-

cuss both in this chapter.

Key Concepts Refresher

You need to understand and be able to perform the following types of tasks when

developing ABAP programs:

� Produce reports that are flexible for the user

� Display data in a tabular format

Overview of ALV Programming

The graphical user interface in the SAP system is based on SAP GUI windows (screens

from the technical viewpoint of the programmer). Every dialog is implemented

Chapter 15 ALV Grid Control478
using Dynpros of programs. Prior to release 4.5 you could only use elements that

were provided by the Screen Painter (for example, buttons). Starting with release 4.5

it became possible to use controls that are stand-alone binary software components,

one of these being the ALV Grid Control. These controls communicate differently

than standard Dynpro components. Rather than communication using the screen

processor, these controls use the Control Framework (CFW).

You cannot create stand-alone instances of a control on the presentation server.

You must provide a special control known as a container control. This container

control is placed in a reserved area on the screen, and the ALV Grid is within this

container control. The steps to place a control on a screen are as follows:

1. Reserve an area in the screen for the container using a special screen element—

the Custom Control Area. The process for this is similar to the way you reserve

a subscreen area for a subscreen.

2. Create an instance of the container control class and link it to the area reserved

on the screen. The container control is now visualized in the reserved area.

3. Create an ALV Grid Control instance, and then link it to the container control

instance. The ALV Grid Control is now visualized in the container.

To reserve an area on the screen for the control, you use the Graphical Layout Edi-

tor of the Screen Painter. Click on the Custom Control button, and “draw” the area

for the container on the screen. You then need to provide a name for the created

custom control area so that you can link it to the container later.

ALV Grid Programming (CL_GUI_ALV_GRID)

You next need to generate an instance of a container. In your program, you need

to do this before displaying the screen where the ALV Grid Control is to appear on

the presentation server. The Process Before Output (PBO) of the screen that con-

tains the reserved area is the usual place to create the container instance (the defi-

nition of the reserved area is shown in Figure 15.1). This event block is always called

prior to displaying the screen.

The process to create a custom container instance starts with a declaration of the

reference variable. The reference variable needs to refer to the Container class, in

this case TYPE REF TO cl_gui_custom_container. You generate a container control

instance by using the statement CREATE OBJECT to generate an instance of the class

cl_gui_custom_container. Link the container you are creating to the area you

reserved for it on the screen by using the IMPORTING parameter container_name
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 15 479
(see Listing 15.1 for an example). We recommend that you use the ABAP Objects

pattern (or dragging and dropping from the class name in the Object Navigator

into your code to automatically produce the CREATE OBJECT call) to insert the CRE-

ATE OBJECT statement.

Figure 15.1 Screen Container Area

DATA:
gt_sflight TYPE TABLE OF sflight,
gs_layout TYPE lvc_s_layo,
gr_alv_grid TYPE REF TO cl_gui_alv_grid,
gr_custom_container TYPE REF TO cl_gui_custom_container.

IF gr_custom_container IS NOT BOUND.
* Create an instance of a container

CREATE OBJECT gr_custom_container
EXPORTING

container_name = 'ALV_CONTAINER_01'
EXCEPTIONS

cntl_error = 1
cntl_system_error = 2
create_error = 3
lifetime_error = 4
lifetime_dynpro_dynpro_link = 5
OTHERS = 6.

Chapter 15 ALV Grid Control480
IF sy-subrc NE 0.
MESSAGE a001(z_message_class).

* Container could not be created, program terminated
ENDIF.

* Create an instance of alv control
CREATE OBJECT gr_alv_grid

EXPORTING
i_parent = gr_custom_container.

ENDIF.

gs_layout-grid_title = 'Flights'(100).
CALL METHOD gr_alv_grid->set_table_for_first_display

EXPORTING
i_structure_name = 'SFLIGHT'
is_layout = gs_layout

CHANGING
it_outtab = gt_sflight.

Listing 15.1 Create ALV Grid

If you create this instance in a PBO module, which will be executed as many times

as the screen is processed, you need to ensure that an instance is generated only

the first time; you want only one container created, regardless of how many times

the user processes the screen. Otherwise, you may generate a new object every

time the Dynpro is processed (or the code is re-executed). You can stop unwanted

instances from being generated by only creating one after checking if the refer-

ence variable is not valid with the condition IS NOT BOUND.

Tip

We prefer IS NOT BOUND over the more common IS INITIAL because IS NOT
BOUND checks to see if the reference is invalid instead of just checking that the

variable is empty. Resources that the control occupies on the presentation server

are typically released at the end of the program. However, these resources can

also be released explicitly by calling the instance method FREE.

An early release of the resource by this means invalidates the reference variable. If

this code does not create a new object because a value still exists, the invalid ref-

erence is supplied to the ALV. However, by using IS BOUND, the reference is deter-

mined to be invalid, and a new object is created.

You must create the instance of the ALV Grid Control after the container control

instance because the container instance must exist before you can link the ALV

Grid to it. This needs to occur before the SAP GUI window is sent to the presenta-

tion server because the container and ALV Grid must exist before its display.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 15 481
Therefore, you can again use the PBO of the screen (return to Listing 15.1 for an

example).

You declare a reference variable typed with reference to the class CL_GUI_ALV_

GRID. Then provide the instance reference of the previously generated container

control instance to the parameter i_parent during the instance constructor call

that is triggered when you call CREATE OBJECT. Supplying the container during the

creation of the ALV Grid provides the link between these objects. If an error excep-

tion occurs when you are creating the instance, you should react with a termina-

tion message to abort the program.

If you want to display the ALV Grid Control in full-screen mode, which is most

often used to display a report in the entire screen body, you do not reserve a con-

trol area on the screen, and you do not create a container control. Instead, you

assign a static value to the export parameter i_parent, as shown in Listing 15.2.

CREATE OBJECT gr_alv_grid
EXPORTING
i_parent = cl_gui_custom_container=>screen0.

Listing 15.2 Create a Full-Screen ALV Grid

As a result of the above steps, you have created an ALV Grid Control as a screen ele-

ment. However, you will only see a frame in the SAP GUI window because the con-

trols do not yet display anything. You still need to supply the presentation server

controls with data that they can display.

The calling program now needs to provide all of the data for display and the rules

that define how this data is to be displayed (through the use of the field catalog).

You must pass the data for display to the ALV Grid as a standard internal table to

the method SET_TABLE_FOR_FIRST_DISPLAY, which you call for the ALV Grid

instance. The ALV Grid does not make a copy of the data, but instead manages a

reference of the supplied internal table. All actions of the ALV instance (for exam-

ple, sorting and filtering) are performed by the instance on the internal table that

resides in the calling program. This means you must ensure that the internal table

has existed for at least as long as the ALV Grid instance. In other words, only use a

local table in a modularization unit that outlives the ALV Grid Control.

If the user sorts the data in the ALV Grid, the contents of the internal table in the

calling ABAP program are sorted. Therefore, the table supplied to the ALV Grid

must be a standard table. All other interactions by the user only read the data. You

use the instance method SET_TABLE_FOR_FIRST_DISPLAY to pass the display data,

Chapter 15 ALV Grid Control482
the field catalog, and other additional information regarding the presentation or

layout of the data to the ALV Grid.

Table 15.1 shows the primary parameters for an ALV table display.

The data to appear in the ALV must be supplied to the parameter it_outtab; all

other parameters are optional. If you supply the name of a global structure type

(for example, a structure, table, or view from the ABAP Dictionary) to the parame-

ter i_structure_name, the field catalog is automatically generated by the ALV Grid

for the fields in this structure, table, or view. However, each component in the

structure must also exist in the data internal table as a column. This displays all

columns from the data table with the same names as those in the provided struc-

ture in the ALV Grid.

The minimum information you need to provide is the display data (it_outtab)

from the internal table and field information for the display data. The simplest

Parameter Purpose

it_outtab Displays data in a standard internal table.

it_fieldcatalog The field catalog is a standard internal table that contains

information about the columns to be displayed.

i_structure_name If provided, this parameter allows the ALV to automatically

generate the field catalog for all fields contained in the

structure, which must be an object from the ABAP Dictio-

nary.

is_variant, i_save, and

i_default
These parameters provide the user with the ability to change

or save the display layout.

is_layout This structure provides fields for setting graphical properties

of the grid control, displaying exceptions, calculating totals,

and enabling specific interaction options.

is_print The print structure contains fields for settings when the list

is printed.

it_special_groups Passes texts for field groups defined in the field catalog.

it_toolbar_excluding The names of the standard functions you want to hide on

the toolbar.

it_filter Provides the initial settings for filtering.

it_sort Provides the initial settings for sorting.

Table 15.1 Primary Parameters for ALV Table Display
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 15 483
way to provide the field information about the display data is to provide an ABAP

Dictionary structure, table, or view in the parameter i_structure_name.

You can have the list data and the additional information sent to the presentation

server again by using the method REFRESH_TABLE_DISPLAY. The parameter i_

soft_refresh, if supplied with the value 'X', specifies that only the data contents

are to be passed again, which keeps the current filter and sort criteria. If you assign

the value 'X' to the ROW or COL fields of a structure using the global type LVC_S_

STBL (for the parameter IS_STABLE), the scroll positions of the rows and columns

will be retained during refreshing.

Tip

You cannot use the method REFRESH_TABLE_DISPLAY if you have changed the

row structure of the display table. In this case, you need to call the method SET_
TABLE_FOR_FIRST_DISPLAY again to create the field catalog again.

Layout Variants

You use the parameters is_variant and i_save to determine what options are

offered to the user for layout variant management. Using different combinations

of these two parameters, you can produce one of three modes (see Table 15.2). Table

15.3 shows the permitted values for i_save.

Mode Result Values of Parameters

Changing the current

layout only

Users can change the current

layout (they can modify the

selection and the order of the

columns displayed)

� is_variant is initial

� i_save = space (default set-

ting)

Loading delivered lay-

outs only

The user can change the cur-

rent layout variant and select

existing variants

� is_variant contains values

supplied in structure

� i_save = space (or is_vari-
ant is initial and i_save is

not equal to space)

Loading and saving

layouts

The user can change the cur-

rent layout variant, manage

existing variants, and save new

variants

� is_variant contains values

supplied in structure

� i_save = either X, U, or A

Table 15.2 Layout Options

Chapter 15 ALV Grid Control484
User-dependent variants must start with a letter. A customer’s cross-user variants

(also known as standard variants) must start with a slash (/). SAP’s cross-user vari-

ants start with a digit (0-9).

Note

Only standard layout variants can be transported. If the user has the required

authorization, he can transport layouts in layout management by selecting Layout •

Transport... from the menu.

Display Settings

To change the ALV layout you provide a work area to the parameter is_layout.

This structure allows you, for example, to supply a title, create a striped (zebra) pat-

tern for the lines, or optimize the column width. You fill the structure’s relevant

fields such as grid_title, zebra, or cwidth_opt. This structure must be typed as

LVC_S_LAYO.

To sort the data in a specific order in the ALV Grid Control when the grid is initially

displayed, you must provide an internal table for the IT_SORT parameter. You use

the table type LVC_T_SORT to declare this internal table. In this internal table, you

create a record for each field that is part of the sort criterion. You specify the col-

umn name in the field FIELDNAME. If more than one field will be part of the sort cri-

terion, you either enter the sequence for each field in the sort criterion in the field

SPOS or you provide the fields in the correct sequence for the sort order. To sort in

ascending order, you place an X in the UP field.

Field Catalog

Because the display table does not have a fixed format, in order for the ALV Grid to

be able to display the data, a description of the columns of the ALV Grid must be

Value Meaning

space The user cannot save the variant.

U The user can save only user-dependent variants.

X The user can save cross-user layout variants.

A The user can save both user-related and cross-user layout variants.

Table 15.3 i_save Values
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 15 485
provided. The field catalog supplies this information, which is then used to display

the data or create a print list.

As mentioned, the simplest way to generate the field catalog is to supply the name

of a structure from the ABAP Dictionary to the ALV Grid in the parameter i_

structure_name. If you cannot provide all details for all columns via the i_struc-

ture_name parameter, you provide this information to the ALV Grid through the

parameter it_fieldcatalog. The internal table you supply to the parameter it_

fieldcatalog should be defined using the table type LVC_T_FCAT, which has the

line type LVC_S_FCAT.

The following are common reasons for the inclusion of a field catalog:

� You want to change the display of the output, for example, a different column

position or heading.

� The internal table has columns that are not contained in the ABAP Dictionary

structure that is supplied for the parameter i_structure_name.

If you supply the parameter i_structure_name with an ABAP Dictionary structure,

table, or view, you need to provide a row in the field catalog for every column of the

display data table that either differs from the underlying ABAP Dictionary structure

or is not contained in the ABAP Dictionary object you supplied. This row must con-

tain the technical properties and other formatting information for the column.

When you create a field catalog in the calling program, you must assign the name

of the column from the display data internal table to the field FIELDNAME. This field

assigns a row in the field catalog to a column of the display data table. Other fields

of the field catalog can be divided into two groups based on their use when creat-

ing a field catalog:

� The field references a global type in the ABAP Dictionary. This applies to the

fields REF_FIELD and REF_TABLE.

� All other fields of the field catalog provide values for the display properties of

the column.

The field catalog row requires minimal information to be supplied; most of the

information is optional. There are three basic ways of placing data into the catalog

(each of the three global structures referenced below could also be either a global

table or view):

� The field exists in a global structure with the same name.

� The field exists in a global structure with a different name.

� The field does not exist in a global structure.

Chapter 15 ALV Grid Control486
If the field exists with the same name in an ABAP Dictionary structure, table, or

view, it is sufficient to assign the name of the structure, table, or view to the field

REF_TABLE. It is only necessary to add the field name from the structure to the REF_

FIELD field if the column name of the display data table and ABAP Dictionary

structure field name are different.

Assigning values to the fields REF_TABLE and, if necessary, REF_FIELD transfers all

type definitions from the specified structure fields in the ABAP Dictionary. To

override a definition from the ABAP Dictionary, you assign a value to one of the

fields other than REF_FIELD and REF_TABLE. If the field does not exist in a global

structure, you do not assign values to the fields REF_TABLE or REF_FIELD, and you

instead assign values to the other fields in the field catalog.

Columns that require special handling based on either currency or unit of mea-

sure are defined in a similar fashion. The fields relevant for these definitions are

shown in Table 15.4.

If the entire column is to be formatted using the same value, you specify this value

in the field shown in Table 15.4. If this field for the column contains a value, the

row-specific value is ignored if it exists.

So to format an entire column for a specific currency, you place the currency key

in the field CURRENCY, and as a result, the contents of CFIELDNAME are ignored. The

same is true for a quantity field. To format the entire column with the same unit of

measure, you supply the unit of measure to the field QUANTITY. Doing so ignores

any values in QFIELDNAME. If the entire column is not to be formatted the same

way, you specify the column name in the display table that contains the currency

key in CFIELDNAME or the quantity’s unit of measure in QFIELDNAME.

ALV Event Handling

An object can announce that its state has changed by triggering events. A common

example with the ALV Grid is a double-click: When the user double-clicks on a cell,

the event DOUBLE_CLICK is triggered. You can program your own handler methods

Value Applies to Entire Column Column Name Containing Value for Row

CURRENCY CFIELDNAME

QUANTITY QFIELDNAME

Table 15.4 Special Handling for Columns
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 15 487
in your own class (normally a local class) that will react to this event when it is trig-

gered.

To have the handler method “listen” for the triggered event, so that it is ready to

react if the event occurs, you need to register this instance. If the event is triggered,

the registered methods are executed in the order in which they were registered.

Your first task in handling events of a control is identifying what events can be

triggered. Examining the associated class of the control (for our example, the class

CL_GUI_ALV_GRID) and looking either at the Events tab or the hierarchal list in the

Workbench expanding the node Events provides you with all of the public events

that can be triggered. The current version of CL_GUI_ALV_GRID has 32 public

events. Some of the more commonly used events for this class are DOUBLE_CLICK,

PRINT_TOP_OF_LIST, PRINT_TOP_OF_PAGE, PRINT_END_OF_PAGE, PRINT_END_OF_

LIST, TOOLBAR, and USER_COMMAND.

To specify an event handler method in a local class, in the definition part you use

the addition FOR EVENT <event_name> OF <class_name>. This addition specifies that

this method can react to the event <event_name> of instances of the class <class_

name>. You structure the names of event handler methods as follows: ON_<event_

name>, where <event_name> is the name of the event. An example of this can be

seen in Listing 15.15.

Only formal parameters that were defined for the event can be used in an event

handler method. The types of the parameters are taken from the event. Whereas

you can only include parameters that are defined within the event, it is not neces-

sary to IMPORT all parameters passed from the RAISE EVENT statement. Listing 15.3

shows the definition of a handler method, Listing 15.4 shows the implementation

of the handler method, and Listing 15.5 shows how to register the handler method.

CLASS lcl_event_receiver DEFINITION.
PUBLIC SECTION.
METHODS:

handle_double_click
FOR EVENT double_click OF cl_gui_alv_grid
IMPORTING e_row e_column.

ENDCLASS. "lcl_event_receiver DEFINITION

Listing 15.3 Definition of Handler Method

CLASS lcl_event_receiver IMPLEMENTATION.
METHOD handle_double_click.
READ TABLE gt_sflight INDEX e_row-index INTO gs_sflight.

Chapter 15 ALV Grid Control488
ENDMETHOD. "handle_double_click
ENDCLASS. "lcl_event_receiver IMPLEMENTATION

Listing 15.4 Handler Method

DATA:
grid1 TYPE REF TO cl_gui_alv_grid,
event_receiver TYPE REF TO lcl_event_receiver.

CREATE OBJECT event_receiver.
SET HANDLER event_receiver->handle_double_click FOR grid1.

Listing 15.5 Registering the Handler

An example of the complete process for handling events with the ALV Object

Model is shown at the end of the next section (see Listing 15.14 and Listing 15.15).

The difference between them is that you need to get an event object before regis-

tering the handler.

To summarize the process:

1. Define the local class.

2. Define the handler method using the correct syntax and importing any param-

eters you want to use.

3. Implement the handler method.

4. Register the handler method using SET HANDLER, before the event can be trig-

gered (normally before the ALV Grid is displayed).

ALV Object Model

The ALV Object Model (ALV OM) is a new feature available since SAP NetWeaver

6.40. In earlier releases, the ALV Grid was based on the global class CL_GUI_ALV_

GRID, which we have already discussed. The ALV Object Model is simpler to use. We

will discuss the three output formats of the ALV: the full-screen ALV, the classic

ABAP list, and the output in a container control as a subarea of a screen.

You must call at least the following two methods in the ALV main class CL_SALV_

TABLE to obtain the desired ALV output:

� The FACTORY static method to instantiate an object of the ALV main class

You pass into this method an internal table that will contain the data to be dis-

played (the display table) from which data is displayed. The display type (classic,

full-screen, in container) is also defined. It is not necessary to actually supply

the data in the display table at this point (in other words, the table can be
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 15 489
empty). During the FACTORY method a reference to the actual table is created.

The data will need to be populated, however, prior to calling the next method.

� The DISPLAY method to place the ALV output on the screen

Use the FACTORY method instead of the usual CREATE OBJECT. The FACTORY

method is a class method and returns an ALV instance. (The CREATE OBJECT

statement can be found in the FACTORY method itself; it generates the instance

for you and passes back the reference so that you can then work with the ALV

Grid.) You use this instance during other method calls to individually adjust the

ALV. If you have multiple ALV displays on a single screen, each will have its own

instance or reference variable.

As with the older ALV, you need to define a reference variable typed with reference

to the class CL_SALV_TABLE. Again, you need a standard internal table for display.

The definitions are shown in Listing 15.6 and Listing 15.7.

TYPES:
BEGIN OF glt_outtab,
carrid TYPE s_carr_id,
connid TYPE s_conn_id,
countryfr TYPE land1,
cityfrom TYPE s_from_cit,
airpfrom TYPE s_fromairp,
countryto TYPE land1,
cityto TYPE s_to_city,
airpto TYPE s_toairp,
fltime TYPE s_fltime,
deptime TYPE s_dep_time,
arrtime TYPE s_arr_time,
distance TYPE s_distance,
distid TYPE s_distid,
fltype TYPE s_fltype,
period TYPE s_period,
icon_flttype TYPE icon_d,
t_color TYPE lvc_t_scol,
t_celltype TYPE salv_t_int4_column,

END OF glt_outtab,
gtt_outtab TYPE STANDARD TABLE OF glt_outtab

WITH NON-UNIQUE DEFAULT KEY.

Listing 15.6 Definition of Internal Table to Pass to the ALV

DATA:
gt_outtab TYPE gtt_outtab,
gs_outtab TYPE glt_outtab.

Listing 15.7 Declaration of Internal Table to Pass to the ALV

Chapter 15 ALV Grid Control490
You then create the ALV instance by calling the FACTORY method. Listing 15.8 shows

the way to produce a classic list display, and Listing 15.9 shows the way to produce

the standard table display. The other optional parameters are also shown in the

first call. These commented parameters allow you to place the ALV in a container.

Both of these calls produce a full-screen ALV because a container is not specified.

The two necessary parameters are r_salv_table, which returns a reference to the

created ALV, and t_table, which is the internal table that contains (or will contain)

the display data for the ALV.

TRY.
CALL METHOD cl_salv_table=>factory

EXPORTING
list_display = if_salv_c_bool_sap=>true

* r_container =
* container_name =

IMPORTING
r_salv_table = gr_table

CHANGING
t_table = gt_outtab.

CATCH cx_salv_msg INTO gr_error.
gv_str_text = gr_error->if_message~get_text().
MESSAGE gv_str_text TYPE 'E'.

ENDTRY.

Listing 15.8 FACTORY Call for a List Display

TRY.
cl_salv_table=>factory(

IMPORTING
r_salv_table = gr_table

CHANGING
t_table = gt_outtab).

CATCH cx_salv_msg INTO gr_error.
gv_str_text = gr_error->if_message~get_text().
MESSAGE gv_str_text TYPE 'E'.

ENDTRY.

Listing 15.9 FACTORY Call for a Standard Table Display

To actually display the ALV, call the appropriately named instance method DIS-

PLAY. This is shown in at the end of Listing 15.10. The output of the classic list dis-

play is shown in Figure 15.2, and the standard ALV is shown in Figure 15.3.

CLEAR: gt_outtab.
SELECT * FROM spfli

INTO CORRESPONDING FIELDS OF TABLE gt_outtab
WHERE carrid IN s_carrid.

TRY.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 15 491
cl_salv_table=>factory(
IMPORTING

r_salv_table = gr_table
CHANGING

t_table = gt_outtab).
CATCH cx_salv_msg INTO gr_error.
gv_str_text = gr_error->if_message~get_text().
MESSAGE gv_str_text TYPE 'E'.

ENDTRY.
gr_table->display().

Listing 15.10 Select, Create the ALV, and Display It

Figure 15.2 List Display

Note

The classic list display is still possible because it is the only way to display multiple

rows for a record.

Notice that there is no field catalog and no structure name provided. If the fields

referenced in the data table are defined with reference to data elements in the

ABAP Dictionary, you need do nothing else. If, however, you want to change the

Chapter 15 ALV Grid Control492
display properties of the ALV, methods exist that allow you to change how the

table is displayed.

Figure 15.3 Standard ALV

You can, for example, display a column as an icon or change the heading of a col-

umn (short, medium, long, or tooltip). These methods allow you to reorder col-

umns, specify the sort order, or hide columns, among other things. The biggest

advantage of the new technique is the speed with which it is possible to write a

program to produce an ALV. Because the field information is automatically pro-

duced or derived, you only need to program changes.

Warning

The classes discussed in the rest of this section are not superclasses and sub-

classes in the sense of object-oriented inheritance. This means that classes lower

in the hierarchy do not inherit properties of classes higher in the hierarchy.

The terms hierarchy, superobject, and subobject are used to identify the parts of an

ALV and show how all objects together represent the ALV as a whole.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 15 493
To change an ALV using the ALV Object Model, you just need to have an object-ori-

ented view of the ALV. Simply put, the ALV itself is an object, and its components

(such as columns, functions, sorting, and so on) are themselves objects, but are the

subobjects of the ALV. If you want to change something about the ALV, you simply

need to:

� Fetch the relevant subobject responsible for the property to be changed from

the parent object (in this case, the ALV instance), such as columns

� Call the method to change the status of the subobject

Listing 15.11 shows the two steps by setting the zebra pattern. First, the ALV table

reference is used to retrieve the display settings, and then the resulting object is

used to call the appropriate method to change the attribute.

DATA:
lr_display TYPE REF TO cl_salv_display_settings.

lr_display = gr_table->get_display_settings().
lr_display->set_striped_pattern(value =

if_salv_c_bool_sap=>true).

Listing 15.11 Calling a Subobject

Nothing else is necessary; the change takes effect immediately. For some elements

of the ALV, such as columns and functions, there are additional levels of subob-

jects. The named superobject “columns” (note that the name is plural) contains

properties that apply to all columns or that affect the interaction of all columns,

such as column order. The named subobject—for example, the “column” (not a

plural) Airline—contains the properties that are only valid for that one column,

such as the column title. The same two steps are repeated for as many levels as you

need to process; retrieve the object reference from the parent object and use this

object reference to call the method to make the change. Table 15.5 contains the

most-used subobjects, the method call to the ALV to retrieve the subobject, and

the class of the subobject. Examples of this can be seen in Listing 15.12.

DATA:
lv_short TYPE scrtext_s,
lv_medium TYPE scrtext_,
lv_long TYPE scrtext_l,
lv_tooltip TYPE lvc_tip,
lr_column TYPE REF TO cl_salv_column,
ir_columns TYPE REF TO cl_salv_columns_table.

ir_columns = gr_table->get_columns().

TRY.
lr_column = ir_columns->get_column('FLTYPE').
lr_column->set_visible(if_salv_c_bool_sap=>false).

Chapter 15 ALV Grid Control494
CATCH cx_salv_not_found. "#EC NO_HANDLER
ENDTRY.

TRY.
CALL METHOD ir_columns->get_column

EXPORTING
columnname = 'ICON_FLTTYPE'

RECEIVING
value = lr_column.

lv_short = 'Charter'(h37).
lr_column->set_short_text(lv_short).
lv_medium = 'Charter flight'(h38).
lr_column->set_medium_text(lv_medium).
lv_long = 'Charter flight'(h39).
lr_column->set_long_text(lv_long).
lv_tooltip = 'Charter flight'(h40).
lr_column->set_tooltip(lv_tooltip).

CATCH cx_salv_not_found . "#EC NO_HANDLER
ENDTRY.

Listing 15.12 Getting the Subobject from the ALV, Hiding a Column, and Adding a Column Heading to
a New Column

The uppermost class of the ALV Object Model class hierarchy is the class CL_SALV_

TABLE. In ALV subordinate classes, naming conventions can help you identify the

level of the object; if the name is plural (for example, CL_SALV_COLUMNS_TABLE), it

refers to the properties of a group of ALV elements. If the name is singular (for

example, CL_SALV_COLUMN_TABLE), you are dealing with the properties of a single

element.

In Table 15.5, each of the GET methods (all are part of CL_SALV_TABLE) is shown with

the object it delivers and a short description.

GET Method Class of the Delivered Object Description

GET_AGGREGATIONS CL_SALV_AGGREGATIONS Aggregated objects

GET_COLUMNS CL_SALV_COLUMNS_TABLE Columns superclass

GET_DISPLAY_SETTINGS CL_SALV_DISPLAY_SET-
TINGS

Defining the display (title,

stripe pattern, lines, and so

on)

GET_EVENT CL_SALV_EVENTS_TABLE Events

GET_FILTERS CL_SALV_FILTERS Filter criteria

GET_FUNCTIONAL_
SETTINGS

CL_SALV_FUNCTIONAL_
SETTINGS

Hyperlink and tooltip super-

class

Table 15.5 ALV Object Model Methods
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 15 495
There are also GET methods for subobjects of the second level (the subobject of the

ALV object). These do apply not to the ALV object, but rather to the subobject’s sub-

object, for example, the object containing all columns of the ALV (class CL_SALV_

COLUMNS_TABLE). Table 15.6 shows the GET methods for these subclasses and the

objects they deliver.

GET_FUNCTIONS CL_SALV_FUNCTIONS_LIST Functions such as sorting,

aggregating, and so on

GET_LAYOUT CL_SALV_LAYOUT Layout variant storage, man-

agement, and so on

GET_PRINT CL_SALV_PRINT Printer settings

GET_SELECTIONS CL_SALV_SELECTIONS Selection mode and selec-

tions

GET_SORTS CL_SALV_SORTS Sorting criteria

Class Get Method Returns Object of

Type

Description

CL_SALV_
AGGREGATIONS

GET_AGGREGATION CL_SALV_
AGGREGATION

An individual aggre-

gation

CL_SALV_COLUMNS_
TABLE

GET_COLUMN CL_SALV_COLUMN_
TABLE

One individual col-

umn

CL_SALV_FILTERS GET_FILTER CL_SALV_FILTER One individual filter

criterion

CL_SALV_FUNC-
TIONAL_
SETTINGS

GET_HYPERLINKS CL_SALV_
HYPERLINKS

Superclass for all

hyperlinks

CL_SALV_FUNC-
TIONAL_
SETTINGS

GET_TOOLTIPS CL_SALV_TOOLTIPS Superclass for all

tooltips

CL_SALV_FUNC-
TIONS_LIST

GET_FUNCTIONS CL_SALV_FUNCTION One individual func-

tion

CL_SALV_SORTS GET_SORTS CL_SALV_SORT One individual sort-

ing criterion

Table 15.6 ALV Subobject Methods

GET Method Class of the Delivered Object Description

Table 15.5 ALV Object Model Methods (Cont.)

Chapter 15 ALV Grid Control496
The process used to place the ALV Grid in a container on the screen follows the

same initial steps as the older version of the ALV Grid Control, but then provides

the container instance to the FACTORY. Listing 15.13 shows an example.

IF gr_container_2100 IS NOT BOUND.
CREATE OBJECT gr_container_2100

EXPORTING
container_name = 'CONTAINER_2100'.

TRY.
cl_salv_table=>factory(
EXPORTING

r_container = gr_container_2100
container_name = 'CONTAINER_2100'

IMPORTING
r_salv_table = gr_table_2100

CHANGING
t_table = gt_outtab_2100).

CATCH cx_salv_msg. "#EC NO_HANDLER
ENDTRY.
PERFORM register_events_2100 USING gr_table_2100.
gr_table_2100->display().

ENDIF.

Listing 15.13 Producing an ALV in a Container Using the ALV Object Model

Because this routine is in code that is re-executed, the code is placed in a check to

see if the container already exists. If the container does not exist, a container is cre-

ated. Once the container is created, the FACTORY method is called, providing the

container name and the reference to the created container (only the reference is

actually necessary). Events are registered (the subroutine is shown in Listing 15.15),

and the ALV is displayed. To provide a distinction between multiple containers, we

have assigned a unique number to the various parts (in this case, the screen num-

ber).

We have simplified this example slightly for space restrictions. Obviously, there

should be error handling following the CATCH statement. Also, calls to subroutines

to modify the technical attributes of the displayed table were omitted. We recom-

mend placing these (sometimes lengthy) changes to the ALV in subroutines or

other modularization units to provide clarity. Especially in the case of Dynpro pro-

gramming, where you may be providing many different containers, often you

may be able to reuse some of these modularization units.

This leads us to the PERFORM that remains before the actual display. This process

again is similar across both ALV classes (and any other type of event handling). Lis-

ting 15.14 shows the definition and implementation of a local class to handle the

events raised (or at least the ones this program is interested in processing) from
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 15 497
the ALV events class. The example concerns both double clicks and single clicks.

When the event is triggered, the local class calls a subroutine to process the event.

CLASS lcl_handle_events_2100 DEFINITION.
PUBLIC SECTION.
METHODS:

on_double_click FOR EVENT double_click
OF cl_salv_events_table

IMPORTING row column,
on_link_click FOR EVENT link_click

OF cl_salv_events_table
IMPORTING row column.

ENDCLASS. " lcl_handle_events_2100 DEFINITION

CLASS lcl_handle_events_2100 IMPLEMENTATION.

METHOD on_double_click.
PERFORM double_click_2100 USING row column .

ENDMETHOD. "on_double_click
METHOD on_link_click.
PERFORM link_click_2100 USING row column .

ENDMETHOD. "on_link_click
ENDCLASS. " lcl_handle_events_2100 IMPLEMENTATION

Listing 15.14 Definition of Local Event Handlers

After creating the ALV reference object and before displaying the table, you need

to actually register the events. As with the older ALV (or any other type of event

processing), you have the handler method of the instance “listen” for the triggered

event. To “listen” for the event, you need to register this instance with the object

that can trigger the event (producing, effectively, a list of listeners). Listing 15.15

shows an example of this.

FORM register_events_2100 USING p_gr_table
TYPE REF TO cl_salv_table.

DATA: lr_events TYPE REF TO cl_salv_events_table.
IF gr_events_2100 IS NOT BOUND.
CREATE OBJECT gr_events_2100.

ENDIF.
lr_events = p_gr_table->get_event().
SET HANDLER gr_events_2100->on_double_click FOR lr_events.
SET HANDLER gr_events_2100->on_link_click FOR lr_events.

ENDFORM. " register_events_2100

Listing 15.15 Registering Events

Unlike the older version of ALV (where it is not necessary to create an object to the

event class because the events belong to the ALV class), we create an object of the

Chapter 15 ALV Grid Control498
event class (CL_SALV_EVENTS_TABLE) if we do not have a valid reference and then

set the handlers for the two events we are interested in processing.

Important Terminology

You should now know what a field catalog is and how to produce one for an ALV.

You should also understand the process for producing an ALV in full-screen mode

and in a container, in both versions of the ALV.

You should also have a thorough understanding of events related to an ALV. You

need to understand how to write the handler method, how to register the event

handler, and where to identify what events can be triggered. Figure 15.4 shows the

events for the ALV Object Model, and Table 15.7 shows the events for the grid con-

trol.

Figure 15.4 Events for CL_SALV_EVENTS_TABLE

Event Description

AFTER_REFRESH After list refresh

AFTER_USER_COMMAND After user command

BEFORE_USER_COMMAND Before user command

BUTTON_CLICK Button click

Table 15.7 Events for CL_GUI_ALV_GRID
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Important Terminology Chapter 15 499
CLICK_COL_HEADER Click on column header

CLICK_ROW_COL Click on cell

CONTEXT_MENU Context menu

CONTEXT_MENU_REQUEST Context menu

CONTEXT_MENU_SELECTED Context menu entry selected

DATA_CHANGED Data was changed

DATA_CHANGED_FINISHED Data in the output table was updated

DBLCLICK_ROW_COL Double-click on cell

DELAYED_CALLBACK Delayed callback

DELAYED_CHANGE_SELECTION Selection has been modified

DELAYED_CHANGED_SEL_CALLBACK The event is triggered if the user selects a

row or column that has not yet been

selected. The ALV Grid Control triggers this

event with a short delay of 1.5 seconds.

DELAYED_MOVE_CURRENT_CELL Focus cell has been moved

DOUBLE_CLICK Double click

DOUBLE_CLICK_COL_SEPARATOR Double-click on column separator

END_OF_LIST End of list

F1 (F1) chosen

HOTSPOT_CLICK Hotspot was selected

LEFT_CLICK_DESIGN Left mouse button pressed on control in

design mode

LEFT_CLICK_RUN Left mouse button pressed on control in run

mode

MENU_BUTTON Menu button

MOVE_CONTROL Control moved

ONDRAG For drag source

ONDROP For drop target

ONDROPCOMPLETE For drag source in case of success

ONDROPGETFLAVOR Multiple flavors possible at a drop

ONF1 On help request

ONF4 On value request

Event Description

Table 15.7 Events for CL_GUI_ALV_GRID (Cont.)

Chapter 15 ALV Grid Control500
Practice Questions

These practice questions will help you evaluate your understanding of the topic.

The questions shown are similar in nature to those found on the certification

examination. Though none of these questions will be found on the exam itself,

they allow you to review your knowledge of the subject. Select the correct answers

and then check the completeness of your answers in the following solution sec-

tion. Remember that you must select all correct answers and only correct answers

on the exam to receive credit for the question.

1. What is the best order to provide an event handler for an ALV?

� A. Create the ALV, write the handler, register for the event, display the ALV

� B. Register for the event, write the handler, create the ALV, display the ALV

� C. Write the handler, register for the event, create the ALV, display the ALV

� D. Write the handler, create the ALV, register for the event, display the ALV

� E. Write the handler, create the ALV, display the ALV, register for the event

PRINT_END_OF_LIST Print mode: END_OF_LIST of classic ALV

PRINT_END_OF_PAGE Print mode: END_OF_PAGE in list processing

PRINT_TOP_OF_LIST Print mode: TOP_OF_LIST of classic ALV

PRINT_TOP_OF_PAGE Print mode: TOP_OF_PAGE in list processing

RIGHT_CLICK Right mouse button clicked on control

SIZE_CONTROL Control resized

SUBTOTAL_TEXT Edit subtotals text

TOOLBAR Toolbar

TOOLBAR_BUTTON_CLICK Toolbar button chosen

TOOLBAR_MENU_SELECTED Toolbar menu entry selected

TOOLBAR_MENUBUTTON_CLICK Toolbar menu button chosen

TOP_OF_PAGE Top of page

TOTAL_CLICK_ROW_COL Click on totals line

USER_COMMAND User command

Event Description

Table 15.7 Events for CL_GUI_ALV_GRID (Cont.)
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Practice Questions Chapter 15 501
2. What are the differences between displaying in a full screen and in a con-

tainer? Select all that apply.

� A. The full screen requires Dynpro programming.

� B. The container requires the use of an additional object (a container control).

� C. The only difference is that the container name must be specified when cre-

ating the ALV object.

� D. Only a full-screen ALV allows the use of event handling.

� E. Only an ALV in a container allows the use of event handling.

� F. Any type of ALV allows the use of event handling.

3. To reserve an area on the screen for an ALV Grid Control, you must do the fol-

lowing:

� A. Create an object (instantiate the object) of the class CL_GUI_CUSTOM_CON-

TAINER

� B. Create an object (instantiate the object) of the class CL_GUI_ALV_GRID

� C. Create an object (instantiate the object) of the class CL_SALV_TABLE

� D. Use the Screen Painter

4. You must call a method to actually display the contents of the display table

after you create an ALV.

� A. True

� B. False

5. Which does the field catalog allow you to do? Select all that apply.

� A. Add a field to the display

� B. Specify the sort order of the display table

� C. Produce a striped pattern for the display lines

� D. Change the title of a column

� E. Change the display order of a column

Chapter 15 ALV Grid Control502
6. Which class is used to define a reference for an instance of the ALV Object

Model?

� A. Class CL_GUI_CUSTOM_CONTAINER

� B. Class CL_GUI_ALV_GRID

� C. Class CL_SALV_TABLE

7. You use the CREATE OBJECT statement to create both types of ALV.

� A. True

� B. False

8. What is the ALV Object Model?

� A. A group of classes that describe the ALV Grid as a whole and inherit from a

single class

� B. A group of hierarchal classes that describe the ALV Grid as a whole but do

not inherit from a single class

9. Which statements are true? Select all that apply.

� A. The ALV Grid uses a reference to the data table for display.

� B. The ALV Object Model uses a reference to the data table for display.

� C. The ALV Grid can define a sort criteria for initial display.

� D. The ALV Object Model can define a sort criteria for initial display.

� E. The ALV Grid requires a table refresh after programmatically changing the

ALV.

� F. The ALV Object Model requires a table refresh after programmatically

changing the ALV.

10. The ALV was introduced with ABAP object-oriented capabilities in release

4.5A.

� A. True

� B. False
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Practice Question Answers and Explanations Chapter 15 503
11. The ALV is entirely implemented using ABAP Objects.

� A. True

� B. False

Practice Question Answers and Explanations

1. Correct answer: D

You should write the handlers, create the ALV, and then register the events of

the ALV you just created before you actually display the ALV.

2. Correct answers: B, F

The container requires the use of an additional object to link the control that

exists on the presentation server to the program running on the application

server. A container control provides this function and is produced from the

class CL_GUI_CUSTOM_CONTAINER.

3. Correct answer: D

To allocate an area on the screen, you use the Screen Painter to “draw” the con-

tainer on the screen and name it. Later, when the program creates the object for

the container, this name is used to assist in linking the control in the SAP GUI

with the application program.

4. Correct answer: A

This is true for both versions of ALV. In both cases you create the ALV and then

call a display method for that object. The method for the ALV Grid Control is

SET_TABLE_FOR_FIRST_DISPLAY of the class CL_GUI_ALV_GRID, and for the ALV

Object Model, the method is DISPLAY from the class CL_SALV_TABLE.

5. Correct answers: A, D, E

The field catalog allows you to add a column to the display, hide a column from

the display, change the title of a column, or place the columns in a different

order. The ALV Grid Control expects different parameters to provide informa-

tion for sorting, filtering, changing the layout, or providing variants.

6. Correct answer: C

The ALV Grid Control uses the class CL_GUI_ALV_GRID, and the ALV Object

Model uses the class CL_SALV_TABLE.

7. Correct answer: B

The CREATE OBJECT statement is only used to instantiate the ALV Grid Control.

The FACTORY method of the class CL_SALV_TABLE is used to instantiate an ALV

Chapter 15 ALV Grid Control504
Object Model ALV Grid. The CREATE OBJECT is in fact inside the FACTORY method,

so an object is created for you, and then the reference is passed back out of the

method.

8. Correct answer: B

The classes of the ALV Object Model are not superclasses and subclasses in the

sense of object-oriented ABAP; that is, the classes lower in the hierarchy here do

not inherit the properties of the classes higher in the hierarchy. The terms hier-

archy, superobject, and subobject should rather illustrate how all objects

together represent the ALV as a whole.

9. Correct answers: A, B, C, D, E

The ALV Object Model does not need to refresh the table display; changes are

effective immediately.

10. Correct answer: A

This is true. Release 4.5A introduced the ABAP object-oriented extension to the

language and also the ALV Grid.

11. Correct answer: B

This is false. Starting with release 4.5, it became possible to use controls that are

stand-alone binary software components, one of these being the ALV Grid Con-

trol. These controls communicate differently than standard Dynpro compo-

nents. Rather than communicating using the screen processor, these controls

use the Control Framework (CFW).

Takeaway

You need to understand the field catalog: how to produce one and how to modify

it. You need to know the process for producing an ALV in a full screen and in a con-

tainer, in both versions of the ALV. You also need to know about event handling

for an ALV. You need to know the steps: write the handler, register the event, and

where to identify what events can be triggered.

Refresher

You must understand the steps necessary to place an ALV Grid in a container: from

allocating space in the screen using Screen Painter to creating the container in

your program and placing the ALV into the container. Effective use in a container
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Takeaway Chapter 15 505
requires an understanding of classic Dynpro handling (see also Chapter 9 and

Chapter 12).

Table 15.8 shows the key concepts for ALV programming.

Tips

As with the majority of the subjects found in the certification examination, it is

important to have as much practical experience with the subject as possible. If you

have not had much exposure to ALV programming, we suggest that you write a

couple of quick programs to understand the concepts. You should use both ver-

sions of the ALV and both full screen and in a container. Simply select data from a

database table and then produce the ALV.

You should now be able to produce ALV Grids in a variety of ways and understand

how to interact with the ALV and the user through events. This knowledge will

allow you to easily pass this topic on the certification examination.

Key Concept Definition

Container control The container control is used to connect the Dynpro to the control.

This allows the ALV Grid to “sit” inside the container, which itself

sits inside the reserved area on the screen.

Control Controls are stand-alone binary software components that are

reusable.

Field catalog The field catalog contains the rules that describe how the data

table is to be displayed.

ALV Object Model The ALV Object Model was a new feature in SAP NetWeaver 6.40. It

is more modern and simpler to use than the original ALV Grid Con-

trol.

Table 15.8 Key Concepts Refresher

© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Chapter 16

User Interfaces (Web Dynpro)

Techniques You’ll Master:

� Understand the architecture of a Web Dynpro component

� Explore the navigation and data transfer in and between Web

Dynpro components

� Identify the most important elements of a Web Dynpro applica-

tion

� Name the contents of a Web Dynpro controller

� Define the mapping between contexts of different controllers

located in the same Web Dynpro component

Chapter 16 User Interfaces (Web Dynpro)508
Web Dynpro is a framework for SAP standard user interfaces and provides support

for the development of the web representation of business applications. Web Dyn-

pro is available on both the ABAP and the Java development environments.

In this chapter you will be provided with a basic understanding of Web Dynpro

ABAP. We will discuss the architecture of Web Dynpro components. We will dis-

cuss the Model View Controller design paradigm that’s used in Web Dynpro ABAP

and the differences between this and UI design models. We will cover the different

types of controllers, identifying their differences and explaining how they are

used. We will also explain data exchange between the components of a Web Dyn-

pro application.

Real-World Scenario

You have been asked to identify what technology is best to develop ABAP-

based web transactions. There are a number of encapsulated functions devel-

oped for use in your company’s SAP system that management would like to

make available in a web browser.

The thought is that a web-based application would be simpler to roll out to

users and easier for them to learn. The fact that it is browser-based means

that the SAP GUI does not need to be installed, so it would have minimal

impact on both users and your IT department, and new functionality could

be rolled out simply by providing links to this new functionality.

However, management also wants to have controls in place. They want to be

able to control authorizations and job function access to some of the data. Of

the available web-based user interfaces, you find that Web Dynpro meets the

entire criterion for your company. Now you need to explain the technology

to the other developers.

Objectives of this Portion of the Test

The purpose of this portion of the certification examination is to verify that you

have an understanding of Web Dynpro ABAP and its capabilities, so it will test your

knowledge of a Web Dynpro development. The points that you will need to under-

stand from this section include the following:
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 16 509
� The architecture of a Web Dynpro component and how these components can

be linked

� The use of a Web Dynpro component that is reusable and mandatory

� The contents of a Web Dynpro controller and how they work together

The certification examination will give medium weight to this chapter compared

to the other topics in the examination. (Because this is similar in concept to classic

Dynpro programming, it is given a similar weighting.) This means there will be an

average percentage of questions when comparing this chapter with any other

chapter.

Key Concepts Refresher

You need to understand and be able to perform the following types of tasks when

developing Web Dynpro ABAP applications:

� Navigation and data transfer within a Web Dynpro component and between

Web Dynpro components

� Define the mapping between contexts of different controllers located in the

same Web Dynpro component

� Declare the usage of a component in another component

Web Dynpro Design

Web Dynpro is one of the SAP NetWeaver standard programming models for user

interfaces (UIs). The Web Dynpro framework is based on the Model View Control-

ler paradigm to ensure a clear division between the definition of the user interface

and the implementation of the application logic. It has the following features that

build on the classic Dynpro model:

� A clear separation between business logic and display logic.

� A uniform metamodel for all types of user interfaces. User interface patterns

normally only contain generic functions of the user interface (for example, a

search) and describe the general appearance of the interface.

� Execution on a number of client platforms. The metadata of Web Dynpro is

independent of the platform where the application is executed. If the metadata

is transferred to a different platform, new source code for that platform is gen-

erated.

Chapter 16 User Interfaces (Web Dynpro)510
Web Dynpro is available in both the ABAP and the Java development environ-

ments. It provides tools for developing a web-based business application. You use

these tools to describe the properties and functions of Web Dynpro applications in

the form of Web Dynpro metadata. The user interface source code necessary for

Web Dynpro is automatically generated and executed at runtime.

Each user interface in Web Dynpro is always made up of the same basic elements

(for example, UI elements). These elements of the metamodel are declared using

Web Dynpro tools. This allows you to define the user interface that you require for

adding buttons, fields, and so on. The system automatically generates the neces-

sary code for this metamodel.

Web Dynpro ABAP was released with SAP NetWeaver Application Server 7.0. To

support this declarative concept of a Web Dynpro application, the ABAP Work-

bench now contains a range of Web Dynpro tools. (The central point of entry into

the ABAP Workbench is Transaction SE80, the Object Navigator.) You can generate

a large proportion of a Web Dynpro application using the tools provided, without

the need to create your own source code. This applies to the following parts of the

application:

� Data flow between the frontend and backend

� Layout of the user interface

� Properties of user interface elements

Every Web Dynpro application is structured according to the Model View Control-

ler paradigm:

� Model

The model is the interface to the system and enables the Web Dynpro applica-

tion access to the business data.

� View

The view is responsible for the presentation of the data in the browser or other

client.

� Controller

The controller lies between the view and the model. It is responsible for format-

ting the model data for display in the view, processing the user entries made by

the user, and returning them to the model; exactly as the name would suggest,

it controls things.

A Web Dynpro component is a reusable entity. The creation of a Web Dynpro com-

ponent is always mandatory, because the existence of the following is linked to

the existence of the component itself:
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 16 511
� Web Dynpro window

� Views

� Controllers

The component interfaces are implemented to provide communication between

the elements of two Web Dynpro components and their call by a user. Their close

relationship with each other means it does not make sense to consider the individ-

ual parts of the component separately.

A Web Dynpro component can be thought of as the container for all of the things

you need to create. It is similar to a module pool being the container for screens

and code for a dialog transaction. Figure 16.1 shows an example of a Web Dynpro

component.

Figure 16.1 Web Dynpro Component

A view represents a rectangular portion of a page displayed by the client. Like a

normal Dynpro, it contains UI elements such as input fields and buttons (see

Figure 16.2). The positioning of these elements is controlled by a property called

the layout (see Figure 16.3). A single web page can be composed of a single view or

multiple views. A window (see Figure 16.4) defines the combination of views and

the navigation between these views. A window can contain an arbitrary number of

Window
Component

controller

Context

View

View

Context

View controller

Context

View controller

Chapter 16 User Interfaces (Web Dynpro)512
views, and a view can be embedded in an arbitrary number of windows. A Web

Dynpro application must have at least one view and at least one window.

Web Dynpro controllers contain the Web Dynpro source code. The hierarchical

storage for the global data area of controllers is called the context.

A Web Dynpro component has a lifetime that begins the first time it is called at

runtime and ends when the Web Dynpro application that called and instantiated

the component ends.

Figure 16.2 View Layout

Figure 16.3 RootUIElementContainer Properties
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 16 513
Figure 16.4 Window Structure

In addition to the visible part (the layout), a view also contains a controller and a

context.

The controller is the active part of the view and is where the code relating to the

view is stored. It determines how the user interacts with the Web Dynpro. The data

used in the view is found in the view context.

Navigation between different views is enabled by plugs. Plugs are your entry and

exit points for views and are divided into two categories:

� Inbound plugs (entry point)

� Outbound plugs (exit point)

The outbound plugs of a view can be used to navigate to a subsequent view. Plugs

are part of a view’s controller. They are assigned to exactly one view.

There are normally several views embedded in a Web Dynpro window. It is there-

fore necessary to specify one view as the view that is displayed first when a win-

dow is called. This view is assigned the Default property.

Note

The first view you create is assigned this property automatically, but you can

change it if you later decide that the starting point should be a different view.

Entering a view using an inbound plug always causes an event to be triggered. As a

result, an event handler method (whose use is optional) is automatically generated

for every inbound plug. This allows the inbound plug itself to process the event to

be handled.

Chapter 16 User Interfaces (Web Dynpro)514
To navigate from one view to another, you establish a navigation link from each

outbound plug of the first view to an inbound plug of the subsequent view. These

navigation links are maintained in the window. Only one navigation link can orig-

inate from one outbound plug. In contrast, an inbound plug can be controlled by

several outbound plugs.

A window is used to combine several views. A view can only be displayed if it has

been embedded in a window. A window always contains one or more views. These

views are connected by navigation links as described above. One of these views is

specified as the start view (default) and is displayed the first time the window is

called. Each window has a uniquely assigned interface view (this is generated auto-

matically by the system whenever you create a window). This interface view rep-

resents the outward view of the window and is linked with a Web Dynpro

application so that the window can be called using a URL. Each interface view is

associated with one window, and each window is associated with one interface

view.

A window has one or several inbound or outbound plugs. Through the use of these

plugs, you can include a window in a navigation chain. Each window plug is visible

within the entire window, and it can be used for navigating within this window.

Note

If you add an existing plug of a window to the component interface, it becomes

part of the interface view belonging to this window. This also makes the plug visi-

ble beyond the limits of the component. These interface plugs are required when-

ever the following situations arise:

� You embed a component window in the window of another component

� You set a Web Dynpro application so that it can be called

� You exit a Web Dynpro application

Controllers

Controllers determine how the user can interact with the application. A Web Dyn-

pro application can contain different instances of controllers and contexts. In

addition to view controllers, which control the behavior of an individual view,

there are also global controllers that provide more general services for all views of

a component (see Figure 16.1 for the relationships between the controllers).

At least one global controller is contained in each Web Dynpro component that is

visible from within the component for all other controllers: the component
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 16 515
controller. The lifetime of this component controller extends from creating data

within the controller to cover the whole period during which the component is in

use. You can add additional global controllers in the form of custom controllers.

Their lifetimes last as long as any view of the component exists.

Each view has exactly one view controller and exactly one view context. This view

controller processes the actions performed by the user in the view. The view con-

text contains the data required for the view. The life of a view controller and its

corresponding context is at least as long as the view is visible in the browser. If you

replace a view with a successive view, the local data (context) is also no longer

available.

Each Web Dynpro component contains exactly one interface controller, which is a

global controller that is also visible outside the component. This makes it part of

the interface of a Web Dynpro component. Communication from one controller to

another occurs by calling methods from a different controller or by triggering an

event that other controllers have registered. You define these controller uses

when you create a controller.

All controller contexts consist of a hierarchal list of nodes and attributes. A con-

text always has a parent, known as a context root node. The context nodes are

arranged in a hierarchy and can have attributes or other nodes as children. An

attribute is not permitted to have children. All the child entries for a node are

known as an element. You can think of a collection of elements in the same way

that a table is a collection of rows.

There are five types of controllers in a Web Dynpro ABAP component. The differ-

ent controller types differ in the entities of which they are composed:

� Component controller

A Web Dynpro component has only one component controller. This is a global

controller and is therefore visible to all other controllers. The functionality of

the entire component is driven by the component controller. There is no visual

interface for this controller.

� Custom controller

Custom controllers are optional. They can be used to encapsulate subfunctions

of the component controller.

� Configuration controller

This is a special custom controller. You only need it if the corresponding com-

ponent implements special configuration and personalization functionality.

Chapter 16 User Interfaces (Web Dynpro)516
� View controller

There is exactly one view controller for each view (which consists of the layout

part and the view controller). This controller processes view-specific flow logic,

for example, checking user input and handling user actions.

� Window controller

There is exactly one window controller for each window. This controller can be

used to process the data passed via the inbound plugs when it is reused as a

child controller. The inbound plug methods of the window can call methods of

this controller.

All controller instances are singletons in respect to their parent component (each

component has exactly one controller). Each controller has its own context with

an existing context root node. You must define all other nodes and attributes.

For all controllers, methods exist that are called by the Web Dynpro framework in

a predefined order. These are called hook methods. Different hook methods are

available depending on the controller type. All controller types contain at least two

hook methods. These methods are processed only once during the lifetime of a

controller instance: when a controller instance is created (wddoinit) and when a

controller instance is deleted (wddoexit). wddoinit can be used to create instances

or triggering authorization checks, whereas wddoexit can be used to release record

locks.

There are two predefined controller attributes; they are used to access the func-

tionality of the controller (wd_this) and the context (wd_context). wd_this is a

self-reference (it is not the same as ME, which is used in ABAP self-reference) to the

current controller’s interface (IF_<controller_name>). It represents all functional-

ity implemented in the generated class. wd_context is a self-reference to the con-

troller’s context root node.

To share information between different controllers, one controller must declare

the use of another controller. You do this on the Properties tab of the controller

that needs to access another controller. You most frequently have a requirement

for this kind of data sharing when you want to create a mapped context node or

access another controller’s user-defined methods.

Contexts

When a node is created in the context of a Web Dynpro component, you specify

the cardinality of the node. The cardinality defines how often a node will be instan-

tiated at runtime—in other words, how many elements of this node are available
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 16 517
at runtime. Table 16.1 shows the possible cardinalities of a Web Dynpro compo-

nent.

Within the Web Dynpro architecture, it is possible to link the contexts of the differ-

ent controllers in different ways:

� You can link a UI element of the user interface of the view with an element of

the view context. This is known as data binding.

� You can define a mapping between two global controller contexts or from a

view context to a global controller context. This is known as context mapping,

and only a reference to the data is made.

Events

The component controller allows you to create events that are used to provide

communication between controllers. This communication allows one controller

to trigger event handlers in different controllers. Interface controller’s events

allow cross-component communication to be implemented. Component control-

ler events are only visible within the component.

Some UI elements (for example, the Button element), can react to a user’s interac-

tion. These events are predefined, and you have to link them with an action at

design time (see Figure 16.5). If such an action is created, an event handler method

is automatically created for this action. You can equip a UI element event (which

may have been inserted several times into a view) with different actions. The event

handler linked to that action will then process the event (see Listing 16.1).

Cardinality Description

1...1 Only one element can be instantiated.

0...1 No more than one element can be instantiated, but it is also possible that

no element is instantiated.

1...n At least one element must be instantiated.

0...n Zero or more instances of the context node can be instantiated.

Table 16.1 Cardinality of a Web Dynpro Component

Chapter 16 User Interfaces (Web Dynpro)518
Figure 16.5 Button Properties and Event

METHOD onactiongoto_out_01 .
wd_this->fire_out_01_plg(
).

ENDMETHOD.

Listing 16.1 Event Handler

Each component has an interface to enable communication between Web Dynpro

components and to enable a component to be called by a user. The interface con-

sists of two parts:

� Interface view

� Interface controller

Web Dynpro Application

A Web Dynpro application is an entry point into a Web Dynpro component and is

the only Web Dynpro entity that can be addressed by a URL. A module pool again

provides a good comparison. A module pool must be started with a transaction

code, and the Web Dynpro application provides the same starting point for Web

Dynpro. The Web Dynpro application is a link to an interface view of Web Dynpro

through the use of an inbound plug declared as a startup plug that has a default

starting view. It contains no information about the elements of the corresponding

component or components behind the interface view. You must specify the fol-

lowing to define a Web Dynpro application:
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 16 519
� The component to be called; this component is known as the root component.

� The interface view of the root component will be initially used; the default view

in this interface defines the default view assembly (the subset of visible views).

� The inbound plug acts as the entry point for the interface view (the type of this

inbound plug must be Startup). If you create a Web Dynpro application for a

component that has only one window (and therefore only one interface view),

then the starting point will be determined automatically.

Graphical Elements

A UI element is any graphical entity (input field, button, textview, etc.) that occu-

pies a position within a view layout. Each UI element is part of the hierarchal list

(see Figure 16.6 for an example). This does not mean that all UI elements are visible

on the screen. Some UI elements, such as the TransparentContainer or the

ViewUIElementContainer, are never visible on the screen. These elements struc-

ture the UI without being visible, but like the visible UI elements, they occupy a

position in the UI element hierarchy. At runtime, all UI elements can be set to

invisible without freeing the space they occupy as UI elements.

Figure 16.6 RootUIElementContainer Hierarchy

Numerous UI elements are available for designing the appearance of a Web Dyn-

pro application. The UI elements are divided into categories (to be enumerated

shortly). These categories are displayed in the view designer when the layout pre-

view is visible. You can drag and drop them into the layout, or alternatively, you

can use the context menu of the ROOTUIELEMENT to create UI elements for your

view layout. You should also be aware that the categories have changed through

Chapter 16 User Interfaces (Web Dynpro)520
various support packages of SAP NetWeaver 7.0, but these changes will not be part

of the examination. Also, placement of a UI element is only possible within the lay-

out property. This means that unlike a classic Dynpro, it is not possible to move a

UI element to a specific point in the view, but it is automatically placed based on

the layout property and the preceding UI elements.

Some of the UI element categories are as follows:

� The standard simple category contains elements that are used frequently in

Web Dynpro applications. Examples are Button, Label, and InputField.

� The standard complex category contains elements that need to have child ele-

ments to define a valid UI element that can be rendered. An example is a Table,

which needs to have a child element of TableColumn for each column to be dis-

played.

� The standard container category contains elements that can have child ele-

ments. Container UI elements can structure the layout either visibly or invisi-

bly.

Other categories contain elements to display ActiveX-based diagrams (Active

Component), SAP Interactive Forms by Adobe (Adobe), or business graphics ren-

dered by the Internet Graphics Server (BusinessGraphics), or to embed office doc-

uments such as Microsoft Word or Excel documents (OfficeIntegration) and some

other special UI elements.

All view layouts are derived from a hierarchy of UI elements. The root node is

always of type TransparentContainer (a non-visible container) and is always

called RootUIElementContainer. You cannot change this. All UI elements added to

a view layout are hierarchically subordinate to the root node RootUIElementCon-

tainer.

Container elements, as mentioned above, are UI elements that can have child ele-

ments. In the view’s layout they occupy a rectangular area. All child UI elements of

a container element are located within this rectangular area. All container ele-

ments also define how their children will be arranged using the Layout property

that assigns a layout manager to the UI element. All of the child elements of a UI

element container inherit a set of properties that relate to the value of the con-

tainer’s Layout property section Layout Data. The Layout property can have one of

four values:

� FlowLayout

The default layout manager is the FlowLayout layout manager. This layout dis-

plays all child attributes of this container in a row. If the container UI element is
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 16 521
too narrow for all child elements to be displayed in one row, they will wrap auto-

matically to the next lines. You cannot force the wrapping at design time. UI ele-

ments in different lines are not related to each other and are not aligned in

columns. You use this kind of container to arrange subcontainers. Figure 16.7

shows an example of FlowLayout.

Figure 16.7 FlowLayout

� RowLayout

If the RowLayout layout manager is used with the container UI element, then all

children inherit the property LayoutData, which can have the values RowData

and RowHeadData. If you set this property to RowHeadData, a break is forced, and

this and subsequent elements appear in the next row. If you set the property to

RowData, this child element will appear in the same line as the previous element,

even if the right-hand margin is reached. UI elements located in different rows

are not related to each other and are not aligned in columns. You can set the

width of each cell by using the width attribute of each child element. Figure 16.8

shows an example of RowLayout.

Figure 16.8 RowLayout (with RowHeadData set on Flight Number and Plane Type)

� MatrixLayout

If the MatrixLayout layout manager is used with the container UI element, then

all children inherit the property LayoutData, which can have values Maxtrix-

Data and MatrixHeadData. If you set this property to MatrixHeadData, a line

break is forced. If you set the property to MatrixData, the child elements will

appear in the same line as the previous element, even if the right-hand margin

is reached. The child elements in this container are arranged in columns.

When you use this layout manager, there is not a static number of columns, but

the number of columns is defined by the maximum number of child elements

Chapter 16 User Interfaces (Web Dynpro)522
in any row. You do not have to have the same number of elements in different

rows. It is possible to span multiple cells with a UI element arranged in a

MatrixLayout by using the colSpan(property). Figure 16.9 shows an example

of MatrixLayout.

Figure 16.9 MatrixLayout

� GridLayout

Like the MatrixLayout, the GridLayout layout manager can be used if you want

a vertical alignment of the elements. Here the number of columns is static and

is defined with the colCount property of the container element. A single child

element does not therefore control whether it is the first element of a new row.

A break will take place once all cells of a row are occupied. If an element or ele-

ments are removed, the arrangement following this point will shift “left” to fill

the now empty cells.

The best way to use the GridLayout layout manager is if all rows occupy the

same number of columns and only complete rows are either inserted or

deleted. Instead of removing UI elements completely, you can replace them

with an InvisibleElement to retain the original element arrangement. Figure

16.10 shows an example of GridLayout.

Figure 16.10 GridLayout (with colCount of 4)

You edit a view layout with the View Editor, which is a Web Dynpro-specific tool.

The View Editor is only available when you are editing a view controller. A custom

controller will not show the View Editor because these controllers have no visual

interface.

The Properties area displays all properties of a selected UI element (return to

Figure 16.5 for an example). The supported client-side events are listed in the
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 16 523
Events properties section if a UI element supports events. Properties related to cli-

ent-side events begin with the prefix on (for example, onFilter, onSort, or onAc-

tion). You must associate actions with each of these events.

Once you have bound a UI element property to a context node or attribute, the UI

element property is supplied with a value from the context data. If the user can

update the UI element property, the context is automatically updated with the

new value during the next round trip. Figure 16.11 shows an example of binding.

Figure 16.11 Binding Example

Note

You can only have a binding relationship between the context and UI elements of

the same view controller. For this reason, any data that you want to bind to the

view UI elements must be stored in the context, as opposed to the attributes of

the controller.

It is usually possible for you to have full control over the appearance of the screen

layout through the use of the Web Dynpro view controller without ever needing

direct access to the UI element objects. You bind any property over which you

want to have programmatic control to an appropriate context node or attribute.

Then you manipulate the context nodes or attributes to which the UI elements are

bound to control the behavior of the UI elements.

Chapter 16 User Interfaces (Web Dynpro)524
To display data for a UI element, you must bind its value property to an appropri-

ate context node or attribute. At a minimum, you must do the following to display

data in the view:

1. Create a node or attribute in the view controller’s context to contain the data. It

is not important whether this is a mapped context node or not.

2. Create the UI element in your view layout.

3. Properties requiring a context binding show a button with a yellow icon and an

empty circle to the right of the property. You assign the required binding by

clicking on this button. The view controller’s context is displayed in a dialog

box. All nodes or attributes of the appropriate type to be bound to the UI ele-

ment property are displayed. You then select an appropriate node or attribute.

After you complete these steps, the context path to the node or attribute will be

displayed as the property’s value. The empty circle button will be replaced with a

green checkmark icon (see Figure 16.11). The context path of the node or attribute

to which it is bound will also be displayed on the layout preview for the UI ele-

ment.

When you establish a binding relationship, this instructs the Web Dynpro screen

to obtain the value for a UI element property from the context node or attribute to

which it is bound. You are not limited with context binding to only supplying an

InputField with a value. The value property of a UI element is just one of the prop-

erties that can be supplied with data with a binding relationship. The binding

between a UI element and a context attribute is a two-way relationship:

� Data is transported from a context to the client during screen rendering.

� Data entered by the user is transported back to the context when the HTTP

return trip is processed. This is a similar concept to that used by a Dynpro’s

input fields.

After you declare a binding relationship, the data in the bound nodes and attri-

butes is transported automatically to the corresponding UI elements. After the

user has interacted with the screen and initiated an HTTP round trip, the new or

modified data in the UI elements is transported back to the same nodes and attri-

butes in the view controller’s context. Before the Web Dynpro framework turns

control over to the action handler, the context already contains the updated infor-

mation.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Important Terminology Chapter 16 525
Note

There is nothing you need to do for this process. The two-way transport process is

entirely automatic. You only need to declare a binding relationship.

Many UI elements (TextViews, Labels, Captions, and so on) display texts when

rendered. You can obtain these texts from the ABAP Dictionary in two ways:

� You bind the property related to the text to a context attribute. This context

attribute is typed with a data element defined in the ABAP Dictionary.

� The UI element is related to a second UI element, which is bound to a context

element that is typed with a data element. In this case, the property related to

the text must be left blank in order to use the dictionary text.

Note

A Label is related to an InputField, and the Text property of the Label is left

blank. The label text then originates from the data element related to the Input-
Field.

Important Terminology

You should be able to identify what makes up a Web Dynpro application. You

should know the parts of a Web Dynpro component. In addition, you need to

understand the purpose of each part and how they exchange information or

events with other parts of the same or another Web Dynpro component. You

should know the types of controllers, the purpose of each, and the number possi-

ble.

Table 16.2 shows the terms used with Web Dynpros.

Term Meaning

Web Dynpro

components

Containers for other entities related to the UI and the Web

Dynpro.

View The layout of a view represents a rectangular part of a page

displayed by the client. The view contains UI elements such as

input fields and buttons.

Window An entity related to the UI; it is the possible combination of

views and flow between the views.

Table 16.2 Definitions for Web Dynpro

Chapter 16 User Interfaces (Web Dynpro)526
Practice Questions

The following practice questions will help you evaluate your understanding of the

topic. The questions shown are similar in nature to those found on the certifica-

tion examination. Though none of these questions will be found on the exam

itself, they allow you to review your knowledge of the subject. Select the correct

Web Dynpro controller Where the Web Dynpro source code is located.

Context The hierarchical storage area for the global data of controllers.

Plugs Provide navigation. Outbound plugs connect to the inbound

plug or starting point for a view. Plugs are part of the controller

of a view. They are always assigned to one view.

Interface view Each window has a uniquely assigned interface view. The

interface view is linked with a Web Dynpro application so that

the window can be called using a URL.

View controller Processes the actions performed by the user in the view. Each

view has only exactly one view controller.

Interface controller A global controller that is also visible outside the component.

It is thus part of the interface of a Web Dynpro component.

Component controller Allows you to create events. Events are used to communicate

between controllers and enable one controller to trigger event

handlers in a different controller. Only one exists per compo-

nent and has no visual interface. It drives the functionality of

the component.

Custom controller This is optional. Can be used to encapsulate subfunctions of

the component controller.

Configuration controller Only one configuration controller can exist in any component.

It is only necessary if the corresponding component imple-

ments special configuration and personalization functionality.

Window controller Only one per window. Can be used to process the data passed

via the inbound plug when reused as a child controller.

Consumer component A component that uses functionality (consumes) in another

component (the used component).

Used component A component that has functionality used by another compo-

nent (the consumer component).

Term Meaning

Table 16.2 Definitions for Web Dynpro (Cont.)
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Practice Questions Chapter 16 527
answers and then check the completeness of your answers in the following solu-

tion section. Remember that you must select all correct answers and only correct

answers on the exam to receive credit for the question.

1. Each component has an interface; of what does this interface consist? Select

all that apply.

� A. Interface view

� B. Interface context

� C. Interface controller

2. What is a plug? Select all that apply.

� A. Can be defined as inbound, outbound, or both

� B. Forms the basis of navigation within a Web Dynpro

� C. Can be defined as default inbound

� D. Can be defined as a startup

� E. Can be defined as an exit

� F. Can be assigned to multiple views

� G. Can be defined as outbound controlling multiple inbound plugs

� H. Can be defined as inbound and be controlled by multiple outbound plugs

3. What does a Web Dynpro component contain? Select all that apply.

� A. Multiple views within a window

� B. UI elements

� C. Component controller

� D. A context

� E. Exactly one interface controller

4. What does a view do? Select all that apply.

� A. Contains other views

� B. Can be contained in a window

� C. Contains windows

Chapter 16 User Interfaces (Web Dynpro)528
� D. If entered by an inbound plug, can cause an event handler method to be

called

� E. Contains a view controller

5. Identify the types of controller. Select all that apply.

� A. Component controller

� B. Custom controller

� C. Consumer controller

� D. Configuration controller

� E. View controller

� F. Window controller

6. Identify the types of layout managers. Select all that apply.

� A. FlowLayout

� B. RowLayout

� C. ColumnLayout

� D. MatrixLayout

� E. GridLayout

� F. TreeLayout

7. The binding between a UI element and a context attribute is a two-way rela-

tionship.

� A. True

� B. False

8. Identify the ways to map context structures. Select all that apply.

� A. Direct context mapping

� B. External context mapping

� C. Dynamic context mapping
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Practice Questions Chapter 16 529
9. What is the Web Dynpro programming model is based on?

� A. Classic Dynpro programming

� B. Business Server Pages (BSPs)

� C. Model View Controller (MVC)

� D. Internet Transaction Server (ITS)

10. When does the lifetime of a Web Dynpro component begin and end?

� A. It begins when instantiated and it ends when the program ends or the

object is freed.

� B. It begins the first time it is called at runtime, and it ends with the Web Dyn-

pro application that called and instantiated the component ends.

� C. It begins each time it is called, and it ends when the component completes.

11. When does the lifetime of a component controller begin and end?

� A. It begins with the Web Dynpro component and ends with the Web Dynpro

application that called it.

� B. It begins the first time the Web Dynpro application is called at runtime and

ends when the Web Dynpro application that called and instantiated the com-

ponent ends.

� C. It lasts from creating data within the controller to cover the whole period

during which the component is in use.

12. In addition to the visible part (the layout), a view also contains a controller and

a context.

� A. True

� B. False

13. A view can only be displayed in which circumstances?

� A. It has been embedded in a window.

� B. It contains an inbound and outbound plug.

� C. It can always be displayed.

Chapter 16 User Interfaces (Web Dynpro)530
Practice Question Answers and Explanations

1. Correct answers: A, C

Each interface component is composed of two parts: the interface view and

interface controller.

2. Correct answers: B, D, E, H

A plug is either inbound or outbound; it cannot be both. The view is defined as

a default, but the plug is defined as a startup. Each plug can only be assigned to

one view. Each outbound plug can only navigate to a single inbound plug. How-

ever, an inbound plug can be triggered by multiple outbound plugs.

3. Correct answers: A, C, E

UI elements are placed within a view of the component. Although there is a

context, it is actually part of either the component controller or a view control-

ler. Therefore, the context is not directly part of the component, but of a sub-

component.

4. Correct answers: B, C, D, E

A view can contain a window, which can contain another view, but a view can-

not be placed into another view.

5. Correct answers: A, B, D, E, F

There is no consumer controller.

6. Correct answers: A, B, D, E

ColumnLayout and TreeLayout are not valid layout managers.

7. Correct answer: A

It is a two-way relationship, which is how data can be displayed in the browser

and be retrieved from user input.

8. Correct answers: A, B

Direct context mapping and external context mapping are the only ways to

map context structures.

9. Correct answer: C

The Web Dynpro programming model is based on the Model View Controller

paradigm to ensure a clear division between the definition of the user interface

and the implementation of the application logic.

10. Correct answer: B

A Web Dynpro component has a lifetime that begins the first time it is called at

runtime and ends when the Web Dynpro application that called and instanti-

ated the component ends.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Takeaway Chapter 16 531
11. Correct answer: C

The lifetime of a component controller extends from creating data within the

controller to cover the whole period during which the component is in use.

12. Correct answer: A

In addition to the visible part (the layout), a view also contains a controller and

a context.

13. Correct answer: A

A view can only be displayed if it has been embedded in a window.

Takeaway

You need to understand how Web Dynpro functions. Remember that it is a para-

digm shift from existing types of Dynpros. It is important to recognize the Model

View Controller paradigm and what is available in each controller or view. It is

important to understand how plugs allow navigation and the application to start

or to exit. You need an understanding of views and how they relate to windows

and how the different Web Dynpro components are linked and exchange data.

Finally, you need to show your knowledge of the different types of controllers,

their purposes, and their capabilities.

Refresher

You must understand the separation of duties in the Model View Controller para-

digm. You must understand the purpose of each (see Table 16.3).

Key Concept Definition

Model This forms the interface to the backend system and thus enables the

Web Dynpro application access to data.

View This is responsible for the representation of the data in the client.

Controller This lies between the view and the model. The controller formats the

model data to be displayed in the view, processes the user entries made

by the user, and returns them to the model.

Table 16.3 Key Concepts Refresher

Chapter 16 User Interfaces (Web Dynpro)532
Tips

It is important to have as much practical experience with this subject as possible.

Unlike the majority of subjects in the certification examination, this is an area

where most test takers will not have sufficient experience.

While some of the topics may be familiar (for example, event handling), the major-

ity of the concepts presented in this chapter require a mind shift. It is indeed a dif-

ferent paradigm and introduces a number of new terms and concepts. You must

learn the terms and understand the concepts.

You should now understand the basics of Web Dynpro ABAP. You should have an

understanding of the components and how these components relate with other

components. This understanding of Web Dynpro ABAP will enable you to com-

plete this portion of the certification examination successfully.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Chapter 17

Class Identification Analysis
and Design

Techniques You’ll Master:

� Use functional methods

� Describe singletons

� Understand class friendship

� Identify inheritance

� Explore interfaces

Chapter 17 Class Identification Analysis and Design534
This chapter expands on the material presented in Chapter 14. The purpose of this

chapter is to provide you with a basic understanding of how classes and objects

can be organized, not to provide details regarding ABAP Objects. We discuss the

advantages of functional methods and the way to create a singleton class. We

cover the purpose of friendship between classes. We also discuss inheritance,

including the up cast and down cast within the hierarchy of the inheritance tree.

Finally, we discuss interfaces and how they can be used to simulate multiple inher-

itance. Each of these topics is covered separately and is followed by practice ques-

tions and solutions.

Real-World Scenario

You have been asked to re-design previously developed functionality. The

application provides data that’s based on expected inventory movement

and is currently developed as a large single program handling all types of

purchase orders and sales orders. This program was changed by several dif-

ferent developers over the years, each focusing on only a single part of the

program.

The objective is to produce a model and eventually a series of classes that can

be used to implement the process using polymorphism.

The goal is to standardize the methods and their parameters. Although some

of the classes involved are not closely related to each other—in other words

they are not specializations or generalizations of each other—they all share

methods and parameters. To simplify the inconsistent nature of these

objects, you need to standardize the naming of these components; even

though these objects are not related, they do need to share the same attri-

butes and methods.

Objectives of This Portion of the Test

The purpose of this portion of the certification examination is to verify that you

have sufficient knowledge to design different types of ABAP classes. This portion

of the examination will test your knowledge of a narrow range of topics. The gen-

eral topic is covered in Chapter 14. The points that you will need to understand

from this section include the following:
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 17 535
� The creation of a singleton (a class that can be instantiated only once)

� The use of functional methods and how they can simplify your programming

� Visibility of components and how different classes can interact

� Tools of the Class Builder, specifically the Refactoring Assistant

� Inheritance, polymorphism, and how to use them correctly

� The use of interfaces to provide similar functionality to unrelated classes

In comparison to other topics, the certification examination will give greater

weight to this chapter. This means there will be a higher percentage of questions

covering this chapter than any other chapter. The reason for this is the direction of

the ABAP language. The concepts described in this chapter are critical to knowing

and using ABAP effectively.

Key Concepts Refresher

Because development of ABAP programs leans toward object-oriented program-

ming with ABAP Objects, you’ll need to understand the advantages and restric-

tions of using object-oriented programming.

Functional Methods

As a refresher, we cover several points that, although they may have been men-

tioned in other chapters, are important for a full understanding.

In Chapter 9 we briefly discussed the RETURNING parameter. Methods that have a

RETURNING parameter are described as functional methods. This means that up

until SAP NetWeaver 7.4 SP 2, they couldn’t also have an EXPORTING or a CHANGING

parameter. Beginning with SAP NetWeaver 7.4 SP 2, however, they can contain

these types of parameters also. The RETURNING parameter must always be passed

by value. Only one RETURNING parameter can be defined for a method. Figure 17.1

gives an example of a simple functional method; the use of this method can be

seen in Listing 17.1.

Chapter 17 Class Identification Analysis and Design536
Figure 17.1 Example of a Functional Method

lv_calc_amt = lv_source_amt / lv_factor.
IF lv_amt NE lr_util->round_up(lv_calc_amt).
lv_amt = lr_util->round_up(lv_calc_amt).

ENDIF.

Listing 17.1 Functional Method Usage

The advantage of functional methods is that they do not require the use of tempo-

rary variables because they can be used in conjunction with other statements.

Prior to the introduction of functional methods, any call to any modularization

unit (examples are a subroutine, a method, or a function module) always required

the result to be stored in some data object. However, functional methods can be

called directly from within various expressions, eliminating the need to temporar-

ily store values. Functional methods can be used in the following:

� Logical expressions (IF, ELSEIF, WHILE, CHECK, and WAIT)

� Case conditions (CASE and WHEN)

� Arithmetic expressions and bit expressions (COMPUTE)

� Sources of values as a local copy (MOVE)

� Search clauses for internal tables, if the operand is not a component of the table

row (LOOP AT ... WHERE)

Before release 7.0 EHP 2, operand positions on the right of the statement COMPUTE

were the only general expression positions. With release 7.02, it is possible to use a

functional method as an operand of a logical expression or as a parameter input of

another method. This is because ABAP itself has now changed some predefined

functions to accept multiple arguments and is called in the same way as a func-

tional method with multiple input parameters (for example, func(p1 = arg1 p2 =

arg2 ...)). The program DEMO_EXPRESSIONS provides examples of logical expres-

sions in release 7.0 EHP 2.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 17 537
This is a major change in the usability of functions and expressions (specifically

regarding operand positions) in release 7.02:

� Calculation expressions, predefined functions, and functional methods can be

used in general expression positions.

� Numerical expressions can be used in numerical expression positions.

� String expressions can be used in character-like expression positions.

� Functional methods can be used in functional operand positions.

These capabilities bring the same advantages of functional methods to predefined

functions and can greatly simplify coding. But as with every stride forward, there

may be a downside to the new advantage: ABAP is now susceptible to the same

obfuscation that can occur in other languages.

Static Methods

There are two kinds of attributes: instance attributes and static attributes, which

are discussed in more detail in Chapter 14. A static attribute exists once for each

class and is visible for all runtime instances in that class. Static attributes typically

relate to all objects, not just a single object. Examples include a counter or global

constants. Likewise, static methods are defined at the class level. The restriction

that only static components can be accessed in a static method applies to the

implementation of the method. This makes sense because a static method can be

called without creating any instance of the class. This means that static methods

do not need instances; that is, they can be accessed directly through the class and,

like a static attribute, only exist in the class and not in each instance. An example

would be to retrieve the current value of the static counter described previously.

Static methods are called using the syntax CALL METHOD classname=>method_name

... . (Alternatively, you can drop the CALL METHOD and put the parameters in paren-

theses at the end of the method call.) Like static attributes, static methods are

addressed with their class name because they do not need instances (see Listing

17.2 for an example). As with instance methods, when you call a static method from

within the class, you can omit the class name.

LOOP AT <table> ASSIGNING <wa>.
MOVE-CORRESPONDING <wa> TO <structure>.
zcl_utility=>create_csv_from_record(
EXPORTING

separator = gc_comma
quote_all_fields = 'F'
output_initial_values = 'X'

Chapter 17 Class Identification Analysis and Design538
source_contents = <structure>
rcd_ref_descr = lr_struct_type

IMPORTING
csv_record = ls_output

EXCEPTIONS
invalid_structure_component = 1
unable_to_preserve_space = 2
OTHERS = 3

).
ASSERT sy-subrc = 0.

Listing 17.2 Example of a Static Method Call

Singletons

There are many cases in which you need to prevent a class from being instantiated

more than once for each program context. You can do this using the singleton,

which is shown in Listing 17.3. A singleton is a class that is final (meaning it cannot

have any subclasses), has a private instantiation level (meaning only the class itself

can create an instance of itself), and is instantiated using its static constructor

(which is executed only after the first time the class is accessed in an application).

You can see the necessary parts in Figure 17.2 through Figure 17.5. Figure 17.3 shows

the static attribute used to store the singleton’s reference. In this way, you ensure

that only one instance of the class can be created in your application. A public

static method could then make the reference to the class available to an external

user, as shown in Figure 17.5.

DATA:
lv_singleton_ref TYPE REF TO zcl_singleton.

lv_singleton_ref = zcl_singleton=>get_reference().

Listing 17.3 Instantiating and Using a Singleton

Figure 17.2 Singleton Class Properties
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 17 539
Figure 17.3 Singleton Attribute

Figure 17.4 Singleton Class Constructor

Figure 17.5 Returning the Singleton Reference

Friendship

In classes, normally there is a strict division between what can be accessed outside

the class itself (PUBLIC) and the inheritance tree (PROTECTED) or just the class itself

(PRIVATE). From outside the class, you can only access the public components of a

class. In rare cases, classes must work together so closely that they need access to

each other’s protected or private components. This can be achieved if one class

grants friendship to another.

The concept of friendship between classes prevents these components from being

made available to all applications, but the friend can access the protected and pri-

vate components directly. A class can grant friendship to other classes and inter-

faces (and through the interface to all classes that implement the interface). The

Chapter 17 Class Identification Analysis and Design540
primary reason for friendship is performance; if a class can access the private attri-

butes of another class directly, rather than having to call a public method to get

hold of that data, then it will be faster because there is less overhead to obtain the

data.

Note

To grant friendship, use the FRIENDS addition of the CLASS statement or the

Friends tab in the Class Builder.

Granting friendship is one-sided; a class that grants friendship is not automati-

cally a friend of its friends. If the class that grants friendship wants to access non-

public components of the friend, this friend must reciprocate and explicitly grant

friendship back to the original class.

Typically, the friend relationship between classes occurs when methods that

access the same data are distributed over several classes. The common data should

not be accessed by classes that are not part of this relationship. In these cases, you

can make the class containing the data a singleton, which ensures that it can only

be instantiated once in each program instance.

You should be aware that the friend attribute is inherited: Classes that inherit from

friends and interfaces containing a friend (as a component interface) also become

friends. You should therefore use extreme caution when granting friendship. The

further up in the inheritance tree you make a friend, the more subclasses can

access all components of a class that granted friendship. However, granting friend-

ship is not inherited. A friend of a superclass is not automatically a friend of its

subclasses.

Inheritance

Specialization is a relationship in which one class (the subclass) inherits all of the

components of another class (the superclass). It is possible for the subclass to add

new components (attributes, methods, etc.) and replace the implementations of

inherited methods. This specialization emphasizes the similarities of the classes.

The components they have in common are only defined and implemented in the

superclass. They are inherited by all the subclasses. You often will describe special-

ization as an “is a” relationship. For example, “A bus is a (specific type of) vehicle”

or “A purchase order is a (specific type of) document.” Reversing the point of view

of specialization is referred to as generalization. Therefore:
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 17 541
� Common components are extracted and defined once in the superclass, allow-

ing for central maintenance and eliminating redundant implementation.

� Subclasses contain extensions (in other words, new components that are

unique to the subclass) and/or changes (implementing different versions of

methods that were inherited).

� Subclasses are dependent on superclasses.

If you use inheritance properly, it provides a significantly better structure for your

software because commonly used elements are only defined once in a central loca-

tion (in the superclass) and then are automatically available to all subclasses. If you

make changes later, they have an immediate effect on the subclasses. You there-

fore need to be careful if you make changes to the superclass, because they will

directly affect the subclasses inheriting from it and when using the Refactoring

Assistant.

Tip

A very common mistake made by those new to object-oriented design is overuse

of inheritance. This problem can be avoided by using the test:

X should inherit from Y only if you can say that X is a Y.

So, while a checkbox is a type of button, you cannot say, for example, that a col-

umn is a table. This is the reason the object model of the ALV is not a group of

inherited objects.

In object-oriented ABAP, you define an inheritance relationship for a subclass

using the INHERITING FROM addition, followed by the superclass that is directly

above the subclass. To do the same for a global class, you click on the Superclass

button on the class’s Properties tab (shown in Figure 17.2). Because this superclass

can inherit from another superclass above it, inheritance hierarchies of varying

complexity can be produced, known as inheritance trees.

Unlike other languages, there is no multiple inheritance in ABAP Objects. You can

only specify one superclass directly above a class. However, you can use interfaces

in ABAP Objects to simulate multiple inheritance. Inheritance is a one-sided rela-

tionship. In other words, subclasses know their direct superclass, but a class does

not know which class inherits from it.

Redefinition

Redefinition allows you to change the implementation of an inherited instance

method in a subclass without changing the signature—in other words, without

Chapter 17 Class Identification Analysis and Design542
changing the parameters or adding new ones. The visibility section for the super-

class must also remain the same. It is therefore not possible to use redefinition

within the PRIVATE SECTION. When you use the REDEFINITION addition, you specify

a new implementation for the inherited method. Because the signature cannot

change, it is not necessary for you to define the method parameters and excep-

tions again. To do the same for a global class, you use the context menu of the

inherited method and select Redefine. In this case, a redefinition of the method is

created (including a commented call to the superclass method). The superclass

cannot be defined as Final (this attribute can be seen in Figure 17.2).

Within the redefined method’s implementation, you can use the prefix SUPER-

>... to access components in the superclass directly above where you are work-

ing. This is often needed when you redefine a method to call the original method

of the superclass.

A redefinition is not normally useful in the case of the constructor. Either the

superclass’s instance constructor can be used without any need to change it, or the

subclass has been expanded (for example, new attributes have been added) and

additional parameters are now required in the constructor’s signature (perhaps to

allow the values for the new attributes to be set when an instance is created). In

ABAP Objects, the instance constructor can only be “overwritten” as part of inher-

itance. This overwriting allows both the signature and the implementation to be

adjusted in the subclass, and it is the only case where extra parameters can be

added.

You must call the instance constructor of the superclass within the constructor of

the subclass. This is due to the specialization relationship: If a constructor is

defined in the superclass, it contains logic that must always be executed when an

object is created for this superclass or its subclass. The runtime system, however,

can only automatically ensure this if the subclass’s constructor was not changed.

Unlike the instance constructor, the static constructor in the superclass is always

called automatically. The runtime system automatically ensures that the static

constructors of all superclasses have been executed before the static constructor

in a particular class is executed.

Note

Overloading, which allows a method to have several definitions with different

signatures and thus also different implementations, is not supported in ABAP

Objects.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 17 543
Visibility

When you use inheritance, another visibility section can be useful: the PROTECTED

SECTION. The protected component’s visibility is between public and private and is

visible to all subclasses and the class itself, but it is still protected from outside the

inheritance tree.

When you define local classes in ABAP, you must follow the syntactical sequence

of PUBLIC SECTION, PROTECTED SECTION, and PRIVATE SECTION. The sequencing for a

global class is handled automatically.

A subclass also inherits the private components of its superclass. You cannot, how-

ever, address them directly in the syntax of the subclass; private means private.

The private components of superclasses can only be addressed indirectly by using

public or protected methods from the superclass. These, in turn, can access the pri-

vate attributes. The alternative is to change these private attributes to protected

attributes, which allows direct access in subclasses.

Using the private visibility section, you can make changes to superclasses without

the need to know details about the subclasses. If the changes you make do not

affect the semantics, you do not need to adapt the subclasses. This is allowed

because the private components of the superclass can only be indirectly accessed.

Because there is only one static component of a class per program context, it

therefore follows that:

� All subclasses share a public or protected static attribute of the superclass.

� You cannot redefine static methods.

Casting

By assigning a subclass reference to a superclass reference, all components that

can be accessed syntactically after the cast assignment are available in the

instance. This is called either an up cast or a widening cast and can be seen in Lis-

ting 17.4. We know the subclass always contains at least the same components as

the superclass and that the name and the signature of redefined methods are iden-

tical. This means you can only address those methods and attributes that were

inherited from the superclass.

DATA:
lv_name TYPE C LENGTH 30,
lr_person TYPE REF TO lcl_person,
lr_manager TYPE REF TO lcl_manager,
lr_employee TYPE REF TO lcl_employee.

Chapter 17 Class Identification Analysis and Design544
CREATE OBJECT lr_manager.
lr_person = lr_manager. " Up cast
lv_name = lr_person->get_name().

Listing 17.4 Example of an Up Cast

You typically use an up cast assignment to prepare for generic access. When an

instance receives a message to execute a particular method, the implementation

of the method in the class of this instance is executed. If the class did not redefine

the method, the implementation from the superclass is executed instead.

When objects from different classes react differently to the same method calls, this

is known as polymorphism. Polymorphism is one of the main strengths of inheri-

tance: A client can handle instances of different classes uniformly, regardless of

their implementation. The runtime system searches for the right implementation

of a method on behalf of the client.

Listing 17.5 and Listing 17.6 show the declaration and use of polymorphism. After

creating a manager and employee, these subclass references are up cast and stored

in a table of the superclass (in this case a table of people). The loop retrieves each

record and obtains the name and salary. Because a manager is an employee and an

employee is a person, depending on the type of employee being processed, differ-

ent calculations could be in place to determine the salary.

TYPES:
llt_person TYPE REF TO lcl_person,
ltt_person TYPE STANDARD TABLE OF llt_person.

DATA:
lv_salary TYPE betrg,
lv_name TYPE name1,
lr_person TYPE REF TO lcl_person,
lt_person TYPE ltt_person,
lr_manager TYPE REF TO lcl_manager,
lr_employee TYPE REF TO lcl_employee.

FIELD-SYMBOLS:
<person> TYPE REF TO lcl_person.

Listing 17.5 Declarations for Generic Handling

APPEND INITIAL LINE TO lt_person ASSIGNING <person>.
<person> = lr_manager.
APPEND INITIAL LINE TO lt_person ASSIGNING <person>.
<person> = lr_employee.
LOOP AT lt_person ASSIGNING <person>.
lv_name = <person>->get_name().
lv_salary = <person>->get_salary().
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 17 545
WRITE: / lv_name, lv_bonus.
ENDLOOP.

Listing 17.6 Up Cast and Polymorphism Calls

Variables of the type “reference to superclass” can also refer to subclass instances

at runtime. You may need to copy such a reference back to a suitable variable of

the type “reference to subclass.” (This is a key point in that the reference variable

being cast must have originally started as a reference to the subclass; you are copy-

ing the reference back to reference the original class.) To assign a superclass refer-

ence to a subclass reference, you must use the down cast assignment operator

MOVE ... ?TO ... or its short form ?= (see Listing 17.7). As a rule, the subclass class

contains more components than the superclass.

lr_manager ?= lr_person. "Down cast

Listing 17.7 Down Cast

After assigning this type of reference back to a subclass reference to the imple-

menting class, clients are no longer limited to just inherited components. All

methods and components of the subclass instance can now be accessed. A down

cast can only be performed after first doing an up cast. Because the target variable

can accept fewer dynamic types after the assignment, this assignment is also

called narrowing cast.

You typically use down cast assignments when specific components of instances

need to be addressed, and their references are kept in variables that are typed on

the superclass (for example, a generic list of objects). You cannot use the super-

class reference for access to subclass components because it only allows access to

the shared or inherited components. Therefore, you need to do the down cast to be

able to access the subclass components.

The runtime system checks before assignment if the current content of the source

reference variable corresponds to the type requirements of the target variable. If

not, an exception is triggered, and the original value of the target reference vari-

able remains unchanged.

Note

In our previous example, we up cast an employee and a manager into a person

table. An attempt to down cast an employee reference into a manager reference

will produce this error. However, because a manager is an employee, a down cast

to an employee reference will always work, if the reference was up cast to start

with.

Chapter 17 Class Identification Analysis and Design546
You can catch this exception of the exception class CX_SY_MOVE_CAST_ERROR by

using the TRY ... ENDTRY and CATCH statements. Another way you can prevent this

runtime error is to use the runtime type identification (RTTI) classes. They can be

used to determine the dynamic type at runtime and to set a condition for the cast.

Beginning with release 7.50, it is possible to use a new predicate expression IS

INSTANCE OF to detect the dynamic type of an object reference variable. This allows

you to check the feasibility of a down cast to check the dynamic type of an object

reference variable as a case distinction.

Interfaces

From a technical point of view, an interface can be thought of as a little like a lim-

ited part of a superclass. However, interfaces cannot be instantiated, do not have

an implementation part, and only have public components. It is possible for you

to simulate multiple inheritance using interfaces. Interfaces allow you to define

uniform interfaces (protocols) for methods. Different classes that include the

interface can therefore implement these methods in different ways but keep the

same semantics. Interfaces therefore contain no implementations.

You can generally define the same components in interfaces and classes, in other

words, attributes, methods, and events. To recognize the semantic differences

from regular inheritance, you should focus on the following typical use case: to

allow the option of having multiple classes implement a method in different ways,

but using the same method names and with uniform signatures. With regular

inheritance, you define this method in the shared superclass. It may not be possi-

ble for you to model a superclass suitably for inheritance (remember, there needs

to be a strong relationship; you must be able to say that your subclass “is a type of”

your superclass). However, you want to treat instances of different classes in the

same way. You need to define an interface and then define this method in these

methods. The interface in this case can be compared with a generalization rela-

tionship with a superclass.

If you compare this use of an interface to regular inheritance, the distribution of

roles is sometimes different: Interfaces are generally defined by the developer

who wants to use them. It is then dependent on each class to decide whether it

offers the methods defined there. This is similar to a specialization relationship

with a subclass.

As occurs with regular inheritance, access to these methods is then usually

generic; in other words, you should use a reference that is typed to the interface.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 17 547
This means you can perform polymorphism with interfaces. This is the only time

you will see reference variables typed with reference to an interface. Because the

interface cannot be instantiated, these reference variables will only be used to

point to instances of classes that include the interface.

Although the same components can be defined in an interface as in a class, inter-

faces do not know the visibility levels of components. All interface components

are public.

Classes implement interfaces as follows:

� You list the interface name in the definition part of the class with the INTER-

FACES statement. This must be in the PUBLIC SECTION (interfaces can only be

implemented publicly). Global classes define interfaces using the Interfaces tab

shown in Figure 17.6.

� You must implement the interface methods in the implementation part of the

class.

� You can address components defined in the interface in the implementation

part of the class.

Figure 17.6 Interface Tab

You distinguish interface components from other components in the implement-

ing class by prefixing the interface name followed by a tilde (~), which is the inter-

face resolution operator. The use of the interface resolution operator enables you

to access interface components using an object reference belonging to the class

that implements the interface as you would the method defined in the implemen-

tation part of the class. You can see an example of the use of an interface in Listing

17.8.

l_r_bi_query_ad->if_rsroa_bi_query~set_fieldcatalog(
l_ts_fieldcatalog).

Listing 17.8 Object Reference to an Interface Component (set_fieldcatalog)

Chapter 17 Class Identification Analysis and Design548
To simplify access to interface components (thereby providing you a shorter name

to use), you can use alias names (see Listing 17.9). These can only appear in the defi-

nition part of a class or in the interface definition, and their use is subject to the

visibility restriction of the defining class.

ALIASES true FOR if_salv_c_bool_sap~true.
IF lv_state EQ true.

Listing 17.9 ALIAS for an Interface Component

You can only access interface components by using an object reference whose

class implements the interface. Syntactically, this also takes place using the inter-

face resolution operator (~).

Alternatively, you can use the alias names defined in the implementing class for

the interface components. If this class is implemented in a subclass, you do not

need to change the way you access these aliased components. However, the source

code would then be less self-explanatory because the origin of the component is

not clear. You could therefore conclude from the syntax that the components

were defined in the class rather than as aliased interface components.

Constructor Expressions

You may use operand types to specify a constructor expression in general expres-

sion positions and functional positions, as long as it's appropriate. The result is

used here as an operand. In a relational expression or calculation expression, the

specified type is incorporated into the comparison or calculation type.

An expression with the operator VALUE that is not used to create an initial value

cannot be specified directly in an arithmetic expression. The operator value never

matches the operand type here. Expressions with the operators NEW and CAST can

be positioned directly before the object component selector (->), and can occur in

chainings. A constructor expression contains:

� A predefined constructor operator

� A data type or object type that matches the operator which can be derived

implicitly from the operand position using #

� Type-specific parameters as specified in parentheses

Each constructor expression creates a result whose data type is determined using

the specified type. The parameters specified in parentheses are used to pass input

values. The following constructor operators exist, as seen in Table 17.1.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 17 549
Introduced with 7.50 was a new system class (CL_ABAP_CORRESPONDING) that you

can use for dynamic mapping rules for the component-by-component assign-

ment of structures and internal tables.

Class Identification

One of the implications of using an object-oriented programming model is that

some ABAP statements are now considered to be obsolete and therefore cannot be

used in ABAP classes. It is important to point out where additional information

can be found, that we will cover only briefly owing to their size.

Operator Description

NEW This instance operator is used to create objects in operand positions.

VALUE This value operator is used to fill complex data objects with values in

operand positions, create initial values of any data type, or control

the results of table expressions.

CONV This conversion operator is used for conversions between data types

in operand positions.

CAST This casting operator is used for down casts of reference variables in

operand positions.

REF This reference operator is used to construct a data reference to a

data object in operand positions or to control the results of table

expressions.

CORRESPONDING This component operator is used to construct a structure or an inter-

nal table in an operand position.

EXACT This lossless operator is used to create a value in an operand position

without losing data.

REDUCE This reduction operator constructs a value from condition iterations

or from table iterations.

FILTER This filter operator FILTER constructs an internal table by filtering

the rows of an internal table.

COND This conditional operator is used to create values or raise class-based

exceptions in operand positions in accordance with conditions.

SWITCH This conditional operator is used to create values or raise class-based

exceptions in operand positions in accordance with conditions.

Table 17.1 Constructor Operands

Chapter 17 Class Identification Analysis and Design550
The list of obsolete statements or forms of statements. The information can be

found in the ABAP keyword documentation. Figure 17.7 shows the location (ABAP –

Keyword Documentation • ABAP – Reference • Obsolete Language Elements) in the

documentation, and Figure 17.8 shows some of the obsolete statements.

Note

In some cases, only a specific variation or addition is obsolete. The statements you

will find there are only available for reasons of compatibility with downward

releases. A statement or statement addition is declared as obsolete only when a

better alternative exists or when the language element is identified as being error

prone (in the sense that it invites insecure and non-robust programming). Most of

the statements listed are syntactically forbidden in ABAP Objects (from release

4.6) or Unicode (release 6.10). Their restriction in ABAP Objects is why they are

mentioned in this chapter.

Figure 17.7 Obsolete Language Location
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Important Terminology Chapter 17 551
Figure 17.8 Some of the Obsolete Elements

Important Terminology

Table 17.2 shows the important terminology for class design.

Term Meaning

Inheritance Inheritance allows you to derive a new class from an existing

class. When subclasses inherit from superclasses and the super-

class is itself the subclass of another class, all the classes involved

form an inheritance tree, whose degree of specialization

increases with each new hierarchical level you add. Conversely,

the classes become more generalized until you reach the root

node of the inheritance tree. Within an inheritance tree, two adja-

cent nodes are the direct superclass or direct subclass of one

another. Other related nodes are referred to as superclasses and

subclasses.

Table 17.2 Definitions for Class Design

Chapter 17 Class Identification Analysis and Design552
Practice Questions

These practice questions will help you evaluate your understanding of the topic.

The questions shown are similar in nature to those found on the certification

examination. Although none of these questions will be found on the actual exam,

they allow you to review your knowledge of the subject. Select the correct answers

and then check the completeness of your answers in the following solution sec-

tion. Remember that you must select all correct answers and only correct answers

on the exam to receive credit for the question.

Single inheritance A class can have more than one direct subclass, but it can only

have one direct superclass.

Multiple inheritance A class inheriting from more than one superclass.

Superclass The class from which the specialization class inherits.

Subclass The specialization class that inherits from the superclass.

Interface Interfaces are extensions to class definitions and provide a uni-

form point of contact for objects. Instances cannot be created

from interfaces. Instead, classes implement interfaces by imple-

menting all their methods. You can then address them using

either class references or interface references.

Different classes implement the same interface in different ways

by implementing the methods differently. Interfaces therefore

form the basis for polymorphism in ABAP Objects.

Up cast An up cast assignment prepares for generic access. You are cast-

ing a reference up the inheritance tree to a more general object.

Down cast A down cast assignment allows for more specialized access. You

are casting a reference back down the inheritance tree to a more

specific object. You cannot down cast any lower in the inheritance

tree than where the object was created.

Polymorphism When objects from different classes react differently to the same

method calls, it is known as polymorphism.

Term Meaning

Table 17.2 Definitions for Class Design (Cont.)
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Practice Questions Chapter 17 553
1. Given the code in the exhibit (see Figure 17.9) and the knowledge that both

lcl_truck and lcl_car inherit from lcl_vehicle, which statements are true?

Select all that apply.

Figure 17.9 Question 1 Exhibit

� A. The code is not syntactically correct.

� B. The table lt_vehicle contains three vehicles.

� C. The code will produce a runtime error.

� D. The code shows three valid up casts.

� E. The code shows two valid up casts.

� F. The code shows no valid up casts.

2. What is unique about a singleton? Select all that apply.

� A. It must be instantiated using a private instance constructor.

� B. It must be instantiated using a public instance constructor.

� C. It must be instantiated using a protected instance constructor.

� D. It must be instantiated using a static private constructor.

� E. It must be instantiated using a static public constructor.

� F. It must be instantiated using a static protected constructor.

Chapter 17 Class Identification Analysis and Design554
� G. It must be defined as FINAL.

� H. It cannot be defined as FINAL.

3. Which statements are true about a class that has granted friendship to

another class? Select all that apply.

� A. The friend has access to private attributes.

� B. The friend has access to protected attributes.

� C. The friend has access to public attributes.

� D. All classes the friend has granted friendship access status to also have the

same access.

� E. All classes that inherit from the friend (subclasses) also have the same

access.

4. There can only be one level in the inheritance tree.

� A. True

� B. False

5. Which statements are true regarding ABAP inheritance? Select all that apply.

� A. You can access the superclass component with the prefix SUPER->.

� B. The instance constructor can be overwritten as part of inheritance.

� C. The static constructor can be overwritten as part of inheritance.

� D. Overloading allows a method to have several definitions with different sig-

natures.

� E. Instance constructors must call the superclass’s constructor.

� F. Static constructors do not need to call the superclass’s constructor.

� G. Polymorphism requires the developer to specify which method to use with

inheritance.

6. Which statements are considered obsolete and cannot be used in ABAP

Objects? Select all that apply.

� A. TABLES

� B. DATA ... TYPE ... OCCURS
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Practice Questions Chapter 17 555
� C. DATA ... BEGIN OF ... OCCURS

� D. INFOTYPES

� E. RANGES

� F. LEAVE

� G. ON CHANGE OF

� H. SEARCH

� I. LOOP AT dbtab

7. With what can you simulate multiple inheritance?

� A. REDEFINITION

� B. INHERITING FROM

� C. INTERFACES

8. What is unique about a functional method? Select all that apply.

� A. It must contain a returning parameter.

� B. It can contain an importing parameter.

� C. It can contain an exporting parameter.

� D. It can contain a changing parameter.

� E. It can be used in logical expressions.

� F. It can be used in SELECT statements.

� G. It must be a singleton.

9. What character is used as a symbol for the operand type in an expression?

� A. @

� B. #

� C. ~

� D. None of the above

10. When you define local classes in ABAP, which syntactical sequence must you

follow?

� A. PUBLIC SECTION, PROTECTED SECTION, PRIVATE SECTION

� B. PRIVATE SECTION, PROTECTED SECTION, PUBLIC SECTION

Chapter 17 Class Identification Analysis and Design556
� C. The order doesn’t matter.

� D. The order is handled automatically.

11. What does the Refactoring Assistant allow you to do? Select all that apply.

� A. Move components between superclasses and subclasses

� B. Rename all occurrences of a method

� C. Move between classes and interfaces

12. ABAP now has predefined functions that behave like functional methods.

� A. True

� B. False

Practice Question Answers and Explanations

1. Correct answers: B, C, E

The table lt_vehicle does contain three vehicles: one vehicle, one truck up

cast as a vehicle, and one car up cast as a vehicle. This also provides the correct

number of up casts, which is two (the third is just an assignment of one vehicle

to another vehicle). The code will produce a runtime error (MOVE_CAST_ERROR)

on the down cast. The reason for the error is simple: lr_vehicle contains a

vehicle, not a truck, and it cannot be down cast to either a truck or a car. If we

took the second record in the table, we could down cast it because it started as

a truck and was up cast to a vehicle. The other two records in the table would

produce the same error as lr_vehicle.

The code is syntactically correct and can be executed (up to the down cast,

which aborts the program). As we have already discussed, two is the correct

number of up casts—not three and not zero.

2. Correct answers: D, G

A singleton must be instantiated using a static private constructor—static so it

is only called once and private so it cannot be called from anywhere else. It

must be defined as FINAL so that it cannot be inherited.

3. Correct answers: A, B, C, E

Friends have access to private, protected, and public attributes. The friend attri-

bute is inherited: Classes that inherit from friends and interfaces containing a

friend (as a component interface) also become friends.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Practice Question Answers and Explanations Chapter 17 557
4. Correct answer: B

There can be many levels of specialization in the inheritance tree.

5. Correct answers: A, B, E, F

You can access the superclass by using the prefix SUPER->. You can override the

instance constructor, but not a static constructor, because it is shared between

all inherited objects. Overloading is not possible in ABAP Objects. Instance con-

structors need to call the superclass’s constructor to make sure that everything

is created correctly. Static constructors do not need to explicitly call the super-

class’s constructor because it is called automatically by the runtime system.

Polymorphism does not require the developer to do anything; the runtime sys-

tem automatically determines which method to call.

6. Correct answers: All options

All of these variations are obsolete.

7. Correct answer: C

Multiple inheritance can be simulated with interfaces.

8. Correct answers: A, B, C, D, E

A functional method must contain a returning parameter (it is what makes it a

functional method) but as of SAP NetWeaver 7.4 SP 2, it can also contain either

changing or exporting parameters. It has always been allowed to contain an

importing parameter. The functional method can be used in logical expres-

sions, such as the source in an assignment, a computation, and case state-

ments.

9. Correct answer: B

The # character is used as a symbol for an operand type.

10. Correct answer: A

When you define local classes in ABAP, you must follow the syntactical

sequence of PUBLIC SECTION, PROTECTED SECTION, and then PRIVATE SECTION.

11. Correct answers: A, C

The Refactoring Assistant allows you to move components between super-

classes and subclasses or between classes and interfaces.

12. Correct answer: A

ABAP has been extended to allow predefined functions to accept multiple

parameters and return a value. These statements can be chained or used in log-

ical conditions.

Chapter 17 Class Identification Analysis and Design558
Takeaway

You will need to understand the fundamentals of object-oriented programming.

This includes the different types of classes and how the visibility of components

affects use outside of the class or method. You will need to understand what makes

a singleton or a returning method, when a class should inherit from a superclass,

and how to specify the inheritance. You should know how interfaces can be used

and how they can be addressed. Finally, you will need an understanding of poly-

morphism and how both up casting and down casting are used.

Refresher

You must understand inheritance and polymorphism. Singletons, returning

methods, friendship, and casting will all play a part in the certification examina-

tion. You must understand differences between instantiated objects and static

objects, and of obsolete statements.

Table 17.3 shows the key concepts of class design.

Tips

With this topic, in particular, it is important to have as much practical experience

with the Class Builder as possible. Understanding the differences between inheri-

tance and interfaces is crucial.

You should now be able to use the Class Builder effectively and produce functional

methods and singletons. You should know the visibility of attributes and methods

based on both inheritance and the visibility section in which they are defined. You

should also know the reason for the use of interfaces in ABAP Objects. Your knowl-

edge of class design will enable you to successfully pass this topic during the certi-

fication exam.

Key Concept Definition

Inheritance Inheritance allows you to derive a new class from an existing class so

that one class (the subclass) adopts the structure and behavior of

another class (superclass), possibly also adapting or extending it.

Polymorphism This is when instances of different classes respond differently to the

same method calls.

Table 17.3 Key Concepts Refresher
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Chapter 18

Enhancements and
Modifications

Techniques You’ll Master:

� Describe various enhancement techniques available in the SAP

system

� Enhance ABAP Dictionary objects without modifying them

� Implement enhancements to the standard SAP system using

user exits, customer exits, Business Transaction Events, and

business add-ins (BAdIs)

� Modify standard SAP repository objects using the Modification

Assistant

� Describe various enhancement techniques from the Enhance-

ment Framework

Chapter 18 Enhancements and Modifications560
If your development requirements cannot be fulfilled by customization or person-

alization, then you can enhance the application, start a custom development proj-

ect, or modify the standard SAP application. SAP provides various enhancement

options to adjust standard SAP repository objects without actually modifying

them. Some of the techniques available for enhancements are user exits, customer

exits, Business Transaction Events, BAdIs, and Enhancement Framework tech-

niques such as enhancement points, enhancement sections, and so on, which can

be implemented without even modifying the SAP system.

In this chapter, we will discuss various enhancement techniques available to

enhance the standard SAP system. We will discuss how to implement each of the

enhancement techniques and how to locate the available enhancement options to

adjust the standard SAP application.

Real-World Scenario

Your customer would like to know the various options available for modify-

ing and enhancing the SAP system, because the SAP standard application

does not support the customer’s business requirement. As an SAP developer

on the project, you should be aware of various enhancement techniques

available in the SAP system so that you can explain the enhancement tech-

nique, features, and benefits and so that you can use them correctly.

Objectives of this Portion of the Test

The objective of this portion of the certification test is to judge your knowledge

about the enhancement techniques available for enhancing the SAP system. It is

expected that you are aware of user exits, customer exits, Business Transaction

Events, and BAdIs.

You should also be able to describe the enhancement options available in SAP Net-

Weaver 7.0. You should be able to explain about the enhancement techniques

available in the Enhancement Framework such as explicit and implicit enhance-

ment points, explicit enhancement sections, and new BAdI technology.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 18 561
Key Concepts Refresher

SAP provides various techniques to adjust the SAP system or application to meet a

customer’s business requirements. First, the application consultant on the project

would try to fulfill the customer requirement by customization or personaliza-

tion. If the requirement cannot be implemented by customization or personaliza-

tion, then you have to see if the requirement can be met by enhancing the

application.

SAP provides you with various techniques to enhance the SAP system. Some of the

techniques available for enhancements are user exits, customer exits, Business

Transaction Events, BAdIs, and Enhancement Framework techniques such as

enhancement points, enhancement sections, and so on. These techniques can be

implemented without modifying the SAP system (except for user exits, which is

technically a modification but does not affect upgrade) and therefore do not

require modification adjustment at upgrade or when you apply support packages.

You should only modify SAP objects if the enhancement techniques we men-

tioned cannot fulfill the business requirement. In this chapter we will cover each

of the enhancement techniques in detail.

Enhancing SAP Applications

You can enhance SAP applications to add your own functionality without modify-

ing the standard SAP system. SAP provides a number of ways to enhance an appli-

cation without modifying the original SAP application or program. SAP

applications can be enhanced or adjusted using one of the following techniques:

� Customization

� Personalization

� User exits

� Customer exits

� Business Transaction Events (BTEs)

� Business add-ins (BAdIs)

� Table and structure enhancements

� Enhancement techniques within the Enhancement Framework

Chapter 18 Enhancements and Modifications562
Customization is used to configure the SAP application via the reference IMG

(Implementation Guide). Customization is not your responsibility, but it allows

you take the set of SAP templates for business processes and manipulate them to

meet your business requirements. You can customize some applications to define

the mandatory screen fields or even hide certain fields or screens from the appli-

cation.

Personalization is used to simplify the SAP business transactions. The aim of per-

sonalization is to adjust the SAP transaction for a specific user or user group or for

the company as a whole. Personalization includes things such as user menus, add-

ing transactions to your Favorites menu, and shortcuts. Transaction variants are

another way to personalize; using these, you can switch off screen elements and

functions of the SAP transaction, thus simplifying the transaction for the user.

The functional consultants on a project should try to adjust the SAP standard

transaction via customization or personalization before considering any develop-

ment work. You enhance the SAP application or embark on custom development

only if the customer requirement cannot be fulfilled through customization or

personalization. Modifications can lead to complications during upgrade. When

SAP delivers a new version of the object, you must decide whether you want to

keep the new version of the object or continue with the old modified version. This

process is known as modification adjustment and can slow the upgrade process.

Enhancement Techniques

Enhancements are ways in which you can implement customer requirements that

have not been provided as part of the standard SAP applications, without modify-

ing the SAP standard objects directly. SAP provides user exits, customer exits,

BAdIs, and so on as preplanned exit points in repository objects that the customer

can use to implement their own enhancement logic. The following section pro-

vides the details regarding all of the various enhancement techniques used in SAP

applications.

User Exits

User exits are empty subroutines provided by SAP in which you can add your

source code. This is the oldest enhancement technique to allow you to insert your
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 18 563
programming logic into the SAP standard application without modifying it. SAP

will no longer provide new user exits, but you can still implement the existing

ones.

User exits are implemented as subroutines and are sometimes called form exits.

All user exits start with USEREXIT_<name> and are generally collected in an Include

program that is attached to the standard application. SAP calls these subroutines

from the standard program. If you implement them, your logic will be executed at

these points. Most of the Sales and Distribution (SD) component still provides user

exits for customer-specific enhancements. Figure 18.1 and Figure 18.2 display a

standard SD component with the Include program and form subroutines inside

them.

Figure 18.1 Program Includes for User Exits

Include for user exits

Chapter 18 Enhancements and Modifications564
Figure 18.2 Form Routine for User Exits

You can locate user exits within a program by searching for the word USEREXIT in

the main program of the application. You need to know where the user exit is

called from within the program before you add your logic to the user exit to

ensure that it’s the right place for you to add additional logic.

You can double-click on the FORM routine of the user exit to locate the PERFORM

statement, which calls the user exit, and then check if it is the right place to add

additional logic (see Figure 18.1). You can also find the user exits for your applica-

tion in the IMG in the System Modifications folder for the specific application (see

Figure 18.3).
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 18 565
Figure 18.3 User Exits in the Reference IMG under System Modification

Most of the USEREXITS for the SD component are in the package VMOD and can be

viewed via Transaction SE80 (see Figure 18.4).

User exits are called from the main program by the usual PERFORM statement

within the application. Any customer enhancements made in the user exits are

technically modifications because they require changes to SAP standard objects

(i.e., the Include programs you have created). However, SAP never delivers a new

version of a user exit Include program, and they will not change these programs,

so the enhancements made using user exits will never impact an upgrade. If SAP

has to deliver additional user exits for a new release, they will be placed in a new

Include program.

Chapter 18 Enhancements and Modifications566
Figure 18.4 User Exits for the SD Component

Customer Exits

Customer exits were introduced after user exits to allow customers to enhance

not only SAP standard code, but also screens and menus. The program exits are

implemented as function modules within the SAP standard program. These func-

tion modules are delivered empty; that is, they do not contain any SAP standard

code. Instead, they are provided so that customers can insert their own logic.

You can add your own functionality to the function module without modifying

the SAP standard business application (because your logic is inserted inside a spe-

cial Include program in the function module that is in the customer namespace).

Thus, there is no effect during a system upgrade. You define SAP enhancements
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 18 567
and manage them via the Transaction SMOD. Customers can view the available

SAP enhancements catalog via Transaction SMOD and read the documentation

about the enhancements before implementing them.

Customer exits are implemented with Transaction CMOD. Figure 18.5 displays an

SAP enhancement via Transaction CMOD. The screen displays program exits,

menu exits, and screen exits for the SAP enhancement CNEX0003.

Figure 18.5 SAP Enhancement Project via Transaction SMOD

If the customer wants to implement a customer exit, they must create an enhance-

ment project in Transaction CMOD. This is a way of grouping enhancements

together so that they can be activated together. One project could contain several

enhancements, each of which could consist of several components, which could

be a mixture of program exits, screen exits, and menu exits. Customer enhance-

ment projects consist of SAP enhancements. Each individual SAP enhancement

can be used in only one customer enhancement project.

The following subsections describe the three types of customer exits.

Chapter 18 Enhancements and Modifications568
Program Exits

The program exits are implemented as a function module within the SAP business

application. The naming convention used for these function modules is EXIT_

<Main_Program>_NNN, where NNN is a three-digit number. Program exits are also

called function module exits and are called from the standard application by using

the ABAP statement CALL CUSTOMER-FUNCTION 'NNN', where NNN is the three-digit

number that is found at the end of the function module. Figure 18.6 displays the

customer exit call within the program, and Figure 18.7 displays the actual function

module corresponding to the CUSTOMER-FUNCTION '004'.

Figure 18.6 Customer Exit Call within the SAP Standard Program
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 18 569
Figure 18.7 Customer Exit Implemented as a Function Module

You can search for SAP customer exit enhancements for an application via Trans-

action SMOD by following the menu path Utilities • Find to call the selection

screen. In the selection screen you can specify the application component or pack-

age to search for the SAP enhancement (see Figure 18.8). You can also search for

SAP enhancements from the Repository Information System browser within the

Object Navigator.

You can search in the program source code (which you want to enhance) for the

statement CALL CUSTOMER-FUNCTION, and based on the search result decide if the

customer exits within the program can be used to insert additional program logic.

To enhance a standard SAP application that contains a customer exit, you have to

create a customer enhancement project to implement the customer exit. The cus-

tomer enhancement project can be created from the ABAP Workbench by follow-

ing the menu path Utilities • Enhancement • Project Management or via

Transaction CMOD. After you have created the customer enhancement project,

you assign the SAP enhancement to the project.

You can find the SAP enhancement for the customer exits function module by

entering the function module name on the SMOD selection screen (as displayed in

Figure 18.8). The search result will provide you with the SAP enhancement to which

Chapter 18 Enhancements and Modifications570
the customer exit function module is assigned, and it can be assigned to the cus-

tomer enhancement project.

Figure 18.8 Selection Screen to Search for SAP Enhancements

After the assignment, you can access the enhancement components such as func-

tion module and insert code in the Include routine within the customer exit. You

can use the data supplied in the function module parameters for the enhance-

ment. You do not have access to the global program data; you can only access the

function module interface parameter for enhancement. You decide which func-

tion module interface to use.

As a final step, you need to activate the project after implementing the functional-

ity. Activating the project turns on the new functionality in the customer exits.

Until you do this, your logic will not be executed as part of the standard applica-

tion. You can also deactivate the customer project to turn off your functionality.

This is useful because it doesn’t require you to touch the code. Figure 18.9 and

Figure 18.10 display the steps to create a customer project.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 18 571
Figure 18.9 Create Customer Enhancement Project

Figure 18.10 Edit Individual Enhancement Component

Transaction CMOD

Chapter 18 Enhancements and Modifications572
You can activate the project by clicking on the Activate Project icon on the initial

customer project screen or on the components screen. You can deactivate it by

clicking on the Deactivate Project icon on the initial screen or on the compo-

nents screen.

Screen Exits

With screen exits, you can insert additional screen elements (for example, an

input field, a table control, or a button) to a standard SAP screen. SAP provides

screen exits by placing a special subscreen area on the standard SAP application

screen. The customer screen is called from the standard screen flow logic and

linked to the SAP standard subscreen area.

Figure 18.11 displays the Flow logic screen for the main screen of the subscreen that

has a statement to call the subscreen in the PBO and a statement in the PAI to pro-

cess the user’s action on the subscreen. The statement CALL CUSTOMER-SUBSCREEN

is called in the PBO and PAI for the screen exit instead of call subscreen. Also, look-

ing at CALL CUSTOMER-SUBSCREEN, you can see that a screen exit is available for the

application. The subscreen is called from the main screen, and the PBO and PAI of

the subscreen are processed just like the normal screen. The PBO and PAI also have

function exits inside the modules DATA_TO_EXIT0100 and DATA_FROM_EXIT0100

that can be used to transfer data from the main screen to the subscreen and vice

versa.

Figure 18.11 Subscreen Call with the PBO Event
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 18 573
For each screen exit, you also have a program exit, because of the need to transfer

the data between the screen and the program. Figure 18.12 displays the program

exits within the mentioned PBO and PAI modules.

Figure 18.12 Program Exits for Screen Exits with the PBO and PAI Modules

You have to implement a customer enhancement project as defined previously to

implement the screen exit. However, if the screen exit belongs to an enhancement

for which you have already created a project, then you edit the existing project

rather than creating a new one. You can also assign the SAP enhancement to

another customer project that may contain other, related enhancements and then

work on the screen exit. Remember that you activate at project level, so if you want

to ensure that your enhancements are “switched on” together, you should group

them inside the same project.

Chapter 18 Enhancements and Modifications574
Menu Exits

Menu exits allow you to attach your own menu item in the pull-down menus of

the SAP standard application. SAP creates menu exits by defining special menu

items in the Menu Painter. The function code for the menu exit item starts with a

plus sign (+), and you have to specify the menu text when editing the menu exit

component within the customer enhancement project. The menu exit item will

not be displayed until the project is activated. A function module exit is provided

for the specific function code of the menu exit.

You can add your own program logic for the menu item within the function mod-

ule exit. Just like screen exits, menu exits go hand-in-hand with program exits.

There is no point in being able to add a new entry to a menu unless you can pro-

gram the logic that will be executed when the user selects this new entry (see

Figure 18.13).

Figure 18.13 Menu Exit Enhancement
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 18 575
You have to create a customer enhancement project similar to the one created for

program exits to implement menu exits. You can also add an SAP enhancement

for the menu exit to the existing customer enhancement project and then edit the

menu exits component with the customer project.

Business Transaction Events

Business Transaction Events (BTEs) have been available since release 4.0 and are

another technique for implementing program exits and only program exits. Busi-

ness Transaction Events are generally found in the General Ledger Accounting (FI-

GL), Accounts Receivable and Payable (FI-AR and FI-AP), and Sales and Distribution

components.

A BTE has a predefined interface (once again, you decide what this will be) and

allows you to attach additional functionality in the form of a service function

module. Unlike customer exits, you create the function module yourself, but this

function module must have the parameters you have dictated. By linking the func-

tion module to the BTE, it will be called at the appropriate point in the SAP stan-

dard application.

BTEs can have the following types of interfaces:

� Publish and subscribe interfaces

� Process interfaces

Publish and Subscribe Interfaces

These interfaces inform external software that a certain event has taken place in

the SAP standard application and provide the data produced. Publish and sub-

scribe BTEs receive data from the SAP standard application but don’t pass any data

back. Therefore, there can be multiple implementations of these BTEs. One use of

publish and subscribe BTEs is to pass data to external software, not expecting any

return data from the external software.

In the SAP program, an event function module is called that determines the active

implementations for the event in question and then executes the service function

modules for each of these active implementations of the BTE event, one after the

other. The order in which the implementations are executed cannot be guaran-

teed.

The name of the event function module for publish and subscribe BTEs begins

with OPEN_FI_PERFORM_<NNNNNNNN>_E or OUTBOUND_CALL_<NNNNNNNN>_E, where

Chapter 18 Enhancements and Modifications576
<NNNNNNNN> is the eight-digit event number. The service function modules for the

event (i.e., the function modules that have been created and implemented) are

executed as defined in the customization. Figure 18.14 displays the customization

for the Business Transaction Event 00001025, and Figure 18.15 displays the BTE call

in the SAP program.

Figure 18.14 BTE Customization for SAP Enhancement

Figure 18.15 BTE Function Call in SAP Program
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 18 577
The customizing for BTE events is defined by calling Transaction FIBF. The custom-

izing for publish and subscribe interfaces is defined by following the menu path

Settings • P/S Modules and selecting the option for customer, partner, or SAP

enhancements (see Figure 18.16).

Figure 18.16 BTE Customization for SAP, Partner, or Customer

Customers and partners have to define a product by following the menu path Set-

tings • Products • Customer or Settings • Products • Partner before they can define

the customizing of the event and the function module they want to be executed.

Publish and subscribe interfaces allow you to start one or more service function

modules without interfering with each other. Customer, partner, or SAP enhance-

ments can define their own service function module in the customization without

interfering with each other by creating their own product. You can also switch

each product on or off as a whole entity. This allows the user to control which

enhancement should be processed and which should not be processed. In contrast

to customer exits, Business Transaction Events allow you to use multiple inter-

faces for additional logic.

Process Interfaces

These interfaces are used to control the business process differently than the way

it is handled in the standard SAP system. In contrast to publish and subscribe, data

exchange takes place in both directions in process interfaces; that is, the SAP stan-

dard application passes data to the function module, and the function module can

pass data back. A process BTE can therefore have only one active implementation.

SAP also provides you with sample function modules for the BTE, with a short text,

interface (i.e., the parameters you need to use for your function module), and doc-

umentation that the customer can use when creating their own function module.

The name for the sample function module is SAMPLE_INTERFACE_<BTE-ID>, and

the easiest way to proceed is to copy it as your starting point.

Chapter 18 Enhancements and Modifications578
BTE Search

You can determine whether an SAP application offers a Business Transaction

Event by searching for the character string OPEN_FI_PERFORM within the source

code of the application transaction (because, as we’ve seen, the event function

module name starts with this string).

You can also search for BTE events by calling Transaction FIBF and following the

menu path Environment • Info System (P/S) or Environment • Infosystem (Process).

Business Add-Ins

A business add-in (BAdI) is an SAP enhancement technique based on object-ori-

ented ABAP. BAdIs, like the previously discussed enhancement techniques, are

predefined by SAP in the standard applications. The definition of business add-ins

can be viewed in Transaction SE18. You use this transaction to create BAdI defini-

tions.

You create an interface for the BAdIs, which contains the definition of the methods

that will be provided for the customer. Then you create an adapter class that

implements the interface and thus provides the interface for BAdI implementa-

tion. In the standard SAP application, you generate an instance of the adapter class

and call the corresponding method within the application. This is where the cus-

tomer can add their own logic, by creating their own implementation of this

method of the BAdI.

The strength of BAdIs lies in the fact that they can have multiple implementations.

You can have several active BAdI implementations if the Multiple use checkbox is

selected (see Figure 18.17). When the BAdI is called in the SAP standard application,

the instance of the BAdI adapter class is responsible for ensuring that all imple-

mentations are called. However, because they can be called in any sequence, it is

not possible to guarantee the order. If you have multiple-use BAdI definitions, the

sequence must not play an important role. A typical example is the execution of

checks before a document is saved.

Similarly, you can have several active BAdI implementations for different filter

values if the Filter-Depend. checkbox is selected for the BAdI. An example of this is

when the filter is based on the country code: The customer can create an imple-

mentation for different countries based on their differing legal requirements or

practices. You can have only one active BAdI implementation at a time if the Mul-

tiple use and Filter-Depend. checkboxes are not selected. Each BAdI can contain
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 18 579
components for program enhancements, menu enhancements, and screen

enhancements, similar to customer exits, described earlier.

Figure 18.17 Business Add-In Attributes

Program enhancements are defined in the form of interface methods. You define

the interface and the methods inside it, including their parameters. To implement

the program enhancement, a BAdI implementation must be created, and a class is

generated automatically for you to implement the method (see Figure 18.18).

Figure 18.18 Business Add-In Interface and Methods

The BAdI definition can also have function codes for menu enhancements. The

function codes for the menu entries are available in the GUI interface and are visi-

ble to the user only when the BAdI is implemented and activated. The function

codes for BAdI menu enhancements start with a plus sign (+), similar to customer

Chapter 18 Enhancements and Modifications580
exits. Menu enhancements can have only one active implementation and are not

found in multiple-use or filter-dependent BAdIs.

In addition to program and menu enhancements, you can also find screen

enhancements in BAdIs. Screen enhancements, like menu enhancements, are not

supported for multiple-use BAdIs. Figure 18.19 and Figure 18.20 display the inter-

face for menu enhancement and screen enhancement, respectively. Menu

enhancements are defined under the FCodes tab, and screen enhancements are

defined under the Subscreens tab.

Figure 18.19 Business Add-Ins for Menu Enhancement

Figure 18.20 Business Add-Ins for Screen Enhancement

Searching Business Add-Ins

There are various ways of searching for BAdIs in standard SAP applications:
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 18 581
� You can search for a BAdI in the relevant application program by searching for

the string CL_EXITHANDLER. If a BAdI is called in the program, then the GET_

INSTANCE static method of this class is called in the program. This method

returns an instance of the BAdI adapter class, and after that, you will see the

BAdI method call that you can implement. Figure 18.21 displays the GET_

INSTANCE method call in the program.

Figure 18.21 GET_INSTANCE Method Call in Standard SAP Program

� You can use forward navigation to reach to the definition of the BAdI. In the

program shown in Figure 18.21 you can double-click on the method DISPLAY_

VAS_ORDER corresponding to reference variable lv_exit, which will display the

interface used to define the BAdI. You can use the where-used functionality to

determine which BAdI the interface is used in and then create the BAdI imple-

mentation.

Chapter 18 Enhancements and Modifications582
� You can use the SAP Application Hierarchy to restrict the component in which

you want to search for BAdIs. The SAP Application Hierarchy displays all of the

standard SAP application components and the packages that have been

assigned to them. You can use the Application Hierarchy with the Repository

Information System to locate BAdIs available for an application.

To locate the BAdIs available for purchasing, proceed as follows:

– Place the cursor on the Purchasing branch of the Application Hierarchy tree

and click on Select Subtree (+/–; see Figure 18.22) or click on the Select Subtree

+/– icon . The Purchasing node is under the SAP MM application.

Figure 18.22 Application Hierarchy to Search for Exits in SAP Applications

– After selecting the Application Hierarchy, select Repository Information Sys-

tem by clicking on the Information System button on the screen. This starts
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 18 583
the Repository Information System browser, and the application will let you

search for any object within the selected application (see Figure 18.23).

Expand the Enhancements subtree, select Business Add-Ins, and then select

Definitions or Implementations to search for the BADI definition or imple-

mentation, respectively, within an application. The system offers you a selec-

tion screen that allows you to narrow down your search, or you can leave the

fields on this screen empty if you want to see all of the BAdIs within the com-

ponent or package you have chosen.

Figure 18.23 Repository Information System to Find BAdIs

You can also use the above technique to find customer exits or enhancement

definitions or implementations within the Application Hierarchy (we’ll discuss

these enhancements later in this chapter).

� Finally, you can also use the reference IMG to locate BAdI definitions for an

application and click on the Execute icon to create your BAdI implementa-

tion (see Figure 18.24).

Chapter 18 Enhancements and Modifications584
Figure 18.24 BAdI Implementation from SAP Reference IMG

Implementing Business Add-Ins

To create BAdI implementations, follow the menu path Tools • ABAP Workbench •

Utilities • Business Add-Ins • Implementation or use Transaction SE19. As of SAP

NetWeaver 7.0, the user interface for Transaction SE19 has changed because there

are new BAdIs in addition to the older classic BAdIs (those discussed here; for

details on new BAdIs, see the end of this chapter). Transaction SE19 allows you to

create BAdI implementations for new and classic BAdIs (see Figure 18.25).

If the BAdI you want to implement is a classic BAdI, select the Classic BAdI radio

button, enter the BAdI name, and click on the Create Impl. button. In the subse-

quent dialog box enter the BAdI implementation name (which should be in the

customer namespace), and enter the short implementation text on the next

screen (see Figure 18.26).
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 18 585
Figure 18.25 Implementing Business Add-Ins: Initial Screen

Figure 18.26 BAdI Implementation

Double-click on the interface method that you want to implement. This starts the

Class Builder editor, where you can insert the source code you want to use. The sys-

tem automatically creates a class, inside which your method implementation will

BAdI implementation name

BAdI method

BAdI implementing class

Chapter 18 Enhancements and Modifications586
be created (you can see the class name in Figure 18.26). After you have inserted

your code, you need to save the changes and activate the BAdI implementation.

You can activate the BAdI implementation by clicking on the Activate icon on

the BAdI scren. Your source code in the method will be executed in the standard

SAP application after the BADI is activated. You can work with only the data sup-

plied by the method parameters for enhancement, which you define.

Implementing Menu Enhancement

You create the BAdI implementation and select the FCodes tab to select the menu

exits. You can double-click on the button on the BAdI implementation screen and

enter the function text, icon name, icon text, and info text for the function code

+EXTENS1 as displayed in Figure 18.27.

Figure 18.27 Menu Enhancement

You have to implement the appropriate interface method and program the action

you want the system to perform when the menu item is selected. Finally, you have

to activate the implementation. The menu enhancement only becomes visible

after the BAdI implementation is activated.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 18 587
Implementing Screen Enhancement

For BAdI screen enhancement you have to create your own screen and write the

program for the screen by creating a module pool or function group. You use the

BAdI interface method to transfer the data from the application program to the

screen and vice versa.

You have to create the BAdI implementation for the screen enhancement and

assign the customer screen in the Scr.No column and the program name under

Program called column, as shown in Figure 18.28. Next, it is important to imple-

ment the interface method to transfer the data between the application and the

customer screen. Finally, you have to activate the BAdI to incorporate the cus-

tomer screen in the standard SAP program.

Figure 18.28 Screen Enhancement

Enhancing the ABAP Dictionary

There are two ways you can add extra fields to standard SAP tables without modi-

fying that SAP table: SAP tables can be enhanced using either an append structure

or a Customizing Include.

� Customers can create an append structure for almost any SAP table or structure

(see restrictions below). Append structures allow you to enhance SAP tables by

adding customer-specific fields that are not part of the standard application,

without modifying the table. Append structures are table-specific; that is, one

append structure can only belong to one table. However, a table can have mul-

tiple append structures.

Whenever a table is activated, the system searches for the active append struc-

tures for that table and attaches them to the database table. Activating an

append structure also activates the table to which it is assigned. You can use an

Chapter 18 Enhancements and Modifications588
append structure as a type in your ABAP programs in the same way that you can

with any ABAP Dictionary table or structure. The append structure is always

added as the last field of the table.

The append structure is always created in the customer namespace. This pro-

tects it from being overwritten during upgrade. The field names in the append

structure must also be in the customer namespace and must begin with ZZ or

YY. This prevents any naming conflict with the new SAP field names that might

be inserted in the future.

You cannot create append structures for pool or cluster tables. Also, you cannot

create an append structure for a table that contains a long field such as the type

LCHR or LRAW because the long field should always be the last field in that table.

� Some of the tables delivered by SAP contain a special Include structure. These

Includes are called Customizing Includes, and you can add customer-specific

fields to them. In contrast to append structures, Customizing Includes can be

included in more than one table or structure, and if you add a field in the

include structure, it will automatically appear in all of the tables or structures

that have this Customizing Include. The Customizing Include name begins with

CI. Just like append structures, Customizing Include field names must lie in the

customer namespace, and the names must begin with ZZ or YY.

Of course there is no point in having extra fields in your SAP tables unless you can

do something with them. You have to enhance the standard SAP application to

populate the fields attached to the append structure or Customizing Include. The

customer-specific fields can be populated using one of the enhancement tech-

niques discussed elsewhere in this chapter.

Enhancement Framework

As of SAP NetWeaver 7.0, the Enhancement Framework allows you to add func-

tionality to the standard SAP application without actually changing the original

repository objects. With this technology, it is possible enhance global classes, func-

tion modules, Web Dynpro ABAP components, and all source code units using

explicit enhancement options and sections. You can also define additional

implicit enhancement options for source code plug-ins.

The Enhancement Framework consists of:

� Explicit enhancement points

These are points that are positioned in repository objects in which the customer
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 18 589
can add functionality in the form of source code without making modifications.

You define explicit enhancement options, whereas you do not preplan implicit

enhancement options.

Explicit enhancement points are explicitly flagged source code points or sec-

tions in ABAP programs and can be enhanced by the source code plug-ins. They

are implemented using the syntax ENHANCEMENT-POINTS.

� Explicit enhancement section

These allow you to replace source code in SAP programs, function modules, and

methods without making modifications. The replaceable SAP source code is

enclosed by the statements ENHANCEMENT-SECTION and END-ENHANCEMENT-SEC-

TION.

� Implicit enhancement points

These are always available to the customer, and they can be used to insert

source code in programs, function modules, and methods without making

modifications. They are also available for SAP objects developed before SAP Net-

Weaver 7.0.

� Enhancement options

These allow you to enhance interface parameters for SAP function modules and

class methods without modification. You can also add additional attributes and

methods to SAP classes. Enhancement options are always available and can be

used by customers to enhance SAP applications. They are also available for SAP

objects developed before SAP NetWeaver 7.0.

� New BAdIs

For SAP NetWeaver 7.0, SAP implemented new BAdI technology and intends to

use it for future enhancement. The new BAdI technology works in the same way

as the classical BAdI, but the adapter call is no longer required. Instead, the new

BAdI technology uses the new language elements GET BADI and CALL BADI. Sim-

ilar to classical BAdIs, new BAdIs provide you with the enhancement for pro-

gram, screen, and menu exits. To use the BAdIs, you have to implement the

enhancement implementation via Transaction SE19.

The system generates the BAdI handle in the kernel at the runtime of the appli-

cation program. Listing 18.1 shows the new BAdI call in the standard SAP appli-

cation.

DATA lf_badi_me_conf TYPE REF to /spe/cd_me_confirmation.
TRY.

GET BADI lf_badi_me_conf.
CATCH cx_badi_not_implemented.

ENDTRY.

Chapter 18 Enhancements and Modifications590
TRY
CALL BADI lf_badi_me_conf->change_ibtyp

EXPORTING
it_likp = xlikp[]
it_lips = xlips[]
it_vbpa = xvbpa[]

CHANGING
cv_ibtyp = lfart_besttyp
cv_no_po_update = lf_no_po_update.

CATCH cx_badi_initial_reference.
ENDTRY.

Listing 18.1 New BAdI Call in Standard SAP Application

The new BAdI handle is generated by the statement GET BADI by specifying the ref-

erence variable. The exception CX_BADI_NOT_IMPLEMENTED is triggered if no active

implementation of the BAdI is found. The CALL BADI statement calls the method

corresponding to the BAdI handle derived from the GET BADI statement. The sys-

tem triggers CX_BADI_INITIAL_REFERENCE if the CALL BADI statement is called with

an initial reference to the handle.

You can search the new BAdI definition by searching for the GET BADI string in the

application program. You can also search for new BAdIs by using the Repository

Information System or the Application Hierarchy with the Repository Informa-

tion System.

� Enhancement spots

These are containers for explicit enhancement options. Enhancement sections

add new BAdIs and carry information about the positions at which enhance-

ment points or BAdIs were created. Enhancement spots either contain new

BAdIs or explicit enhancement sections and enhancement sections. One

enhancement option can manage several enhancement options or BAdIs of a

repository object, or alternatively, several enhancement spots can be assigned

to one enhancement option. Implicit enhancements do not need to be assigned

to enhancement spots.

� Composite enhancement spots

These contain one or some simple or composite enhancements. They are used

to semantically bundle simple or composite enhancement spots.

� Nested source code enhancements

As of SAP NetWeaver 7.0, it is possible to enhance SAP objects using the

Enhancement Framework. In order to enhance the application, we would either

use an implicit or an explicit enhancement, but it is not possible to enhance the
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 18 591
source code plug-in defined within ENHANCEMENT – ENDENHANCEMENT. As of SAP

NetWeaver 7.0 EHP 2, it is possible to create nested enhancements such as

enhancing the source code plug-in. With this it is possible to use the ENHANCE-

MENT-POINT and ENHANCEMENT-SECTION statements within the source code plug-

in. In addition, the implicit enhancement option is available before the first line

and the last line of the source code plug-in.

Modification

An object can be original in one system only. For the SAP system, the original sys-

tem is SAP itself. In customer systems, SAP objects are available as copies. Your

development system is the original system for the objects created on it. The

objects created in your development system are assigned to development or cor-

rection requests if they are assigned to the package. The transport request is used

to transport the development object from the development system to the subse-

quent systems. Changes to the original are assigned to the correction change

request, and the change to the copy (an object that is not developed on the system

where it is being changed) is assigned to the repair change request.

You should not change the SAP object unless the modification you want is abso-

lutely necessary and cannot be implemented by the available enhancement tech-

niques. When you upgrade your system or apply a support package, conflicts can

occur with modified objects. These conflicts occur if you have modified an SAP

object and SAP has delivered a new version of the object. The new object delivered

by SAP becomes an active object in your system, and if you want to keep your

changes, you have to carry out a modification adjustment for the object. The mod-

ification adjustment should always be carried out in the development system and

then transported to the subsequent systems.

To change the SAP object, you require an access key. You have to get the access key

from the SAP Service Marketplace (http://service.sap.com) and register the object

you are changing. The access key is also referred to as SAP Software Change Regis-

tration (SSCR). All objects that are being changed are logged by SAP. This helps SAP

support quickly locate and fix the problem if it is as a result of modification of the

standard SAP object. SAP recommends that you use the Modification Assistant to

modify standard SAP objects, but you can switch off the Modification Assistant if

required. The Modification Assistant makes the modification easier and allows

you to reset the modification.

http://service.sap.com

Chapter 18 Enhancements and Modifications592
Modification Browser

The Modification Browser provides you with an overview of all of the changes

made in the system. The Modification Browser differentiates between modifica-

tions made using the Modification Assistant and those made without it. The Mod-

ification Browser can be started by calling Transaction SE95, and you can restrict

object selection according to various selection criteria on the initial screen (see

Figure 18.29).

Figure 18.29 Modification Browser

The Modification Browser can also be used to reset or undo the modification made

in the system.

SAP Notes Assistant

The SAP Notes Assistant is used to implement SAP Notes, which are corrections to

objects in the SAP system. Before the SAP Notes Assistant was introduced, system

administrators had to apply the SAP Notes manually with the help of the devel-

oper. This increases the likelihood of errors. Without the SAP Notes Assistant, you

would have to enter a registration key for the object before you can change it.

With the SAP Notes Assistant, you no longer need to enter the registration key; it

automatically imports the correction without the Modification Assistant. You no
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Practice Questions Chapter 18 593
longer have to maintain the source code manually, thereby saving time and reduc-

ing the likelihood of errors. The SAP Notes Assistant downloads the notes auto-

matically from the SAP Service Marketplace directly using an RFC connection and

reads the correction before applying the notes to the system. The SAP Notes Assis-

tant also recognizes the dependencies between different notes. The system checks

for the prerequisites and dependencies for other notes. It ascertains whether a

note has a prerequisite note with it and loads the prerequisite note if there is one.

It displays the list of prerequisites in the dialog box, and you implement the note

in the correct order as displayed in the list. You have the option to implement all

of the selected notes at once, or you can implement each note individually. You

also have the option to undo the note implementation if it has been implemented

with the SAP Notes Assistant.

Practice Questions

The following practice questions will help you evaluate your understanding of the

topic. The questions shown are similar in nature to those found on the certifica-

tion examination. Though none of these questions will be found on the exam

itself, they allow you to review your knowledge of the subject. Select the correct

answers and then check the completeness of your answers in the following solu-

tion section. Remember that you must select all correct answers and only correct

answers on the exam to receive credit for the question.

1. Which of the following is a true statement? Select all that apply.

� A. An access key is required to implement business add-ins.

� B. An access key is required to modify SAP repository objects.

� C. An access key is required to enhance an SAP application using a user exit.

� D. An access key is required to implement an implicit enhancement point.

2. SAP enhancements for customer exits are managed by which transaction?

� A. Transaction SMOD

� B. Transaction CMOD

� C. Neither transaction listed here

Chapter 18 Enhancements and Modifications594
3. Customer exits provide program exit, screen exit, and menu exit enhance-

ments.

� A. True

� B. False

4. In the CALL CUSTOMER-FUNCTION 'nnn' statement, nnn is a three-digit number

used in SAP programs for which of the following types of enhancement?

� A. Customer exits

� B. Business add-ins

� C. User exits

� D. New BAdIs

5. How would you find out if an application program offers a program exit?

Select all that apply.

� A. Search for the character string CUSTOMER-FUNCTION

� B. Use the Repository Information System

� C. Use the Application Hierarchy

� D. Look for a customer exit in the SAP reference IMG within an application

area

6. Is it possible to have multiple active implementations of business add-ins at a

time? Select all that apply.

� A. It can have multiple active implementations if the Multiple use checkbox is

selected.

� B. It cannot have a multiple active implementation.

� C. It can have multiple implementations if the Filter-Depend. checkbox is

selected.

7. The statements CALL BADI and GET BADI are used for which type of BAdIs?

� A. Classical BAdI

� B. New BAdI

� C. None of the above
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Practice Questions Chapter 18 595
8. Explicit enhancement points and sections are defined by the SAP application

programmer.

� A. True

� B. False

9. Code within an explicit enhancement section can be replaced by the cus-

tomer.

� A. True

� B. False

10. Code within an explicit enhancement point can be enhanced but cannot be

replaced.

� A. True

� B. False

11. Which of the following statements are correct? Select all that apply.

� A. An enhancement spot can contain an explicit enhancement point and an

enhancement section.

� B. An enhancement spot can contain an explicit enhancement point, explicit

enhancement section, and new BAdI.

� C. An enhancement spot can contain either an explicit enhancement point

and enhancement section or a new BAdI only, but all three cannot be in the

same enhancement spot.

� D. An enhancement spot can contain one or more simple or composite

enhancements.

12. Which of the following statements are true? Select all that apply.

� A. An implicit enhancement point can be used to insert code in an SAP pro-

gram and is always available to the customer.

� B. Implicit enhancement options allow you to enhance interface parameters

for function modules and methods without modifying the repository object.

� C. Implicit enhancement can be used to enhance SAP objects developed prior

to SAP NetWeaver 7.0.

� D. None of the above.

Chapter 18 Enhancements and Modifications596
13. Nested source code enhancement allows you to enhance the source code

plug-in.

� A. True

� B. False

Practice Question Answers and Explanations

1. Correct answers: B, C

These answers are correct for the following reasons:

– An access key is not required to implement BAdIs because you provide the

BAdI definition for the customer or partner to insert additional functionality

for the application.

– An access key is required to modify SAP repository objects. You need to reg-

ister the repository object in the SAP Service Marketplace to generate the

object key and have to enter it to modify the repository object.

– An access key is required to enhance user exits because technically, user exit

implementation is system modification. User exits are included in the spe-

cial Include program that is attached to the module pool program. SAP does

not deliver any new version of Include, so user exit enhancement does not

impact the upgrade, even though it’s a modification of the SAP repository

object.

– Implicit enhancement does not require an access key. It’s an enhancement

that does not modify the SAP repository object.

2. Correct answer: A

SAP manages customer exit enhancement via Transaction SMOD. Transaction

CMOD is used to manage customer enhancement projects.

3. Correct answer: A

Customer exits provide program exit, screen exit, and menu exit enhance-

ment.

4. Correct answer: A

You use the CALL CUSTOMER-FUNCTION 'nnn' statement to define a customer

exit with an SAP application. You also create function modules and groups in

the system, but you would have to insert additional functionality within the

function module as a part of the customer exit implementation via Transaction

CMOD.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Practice Question Answers and Explanations Chapter 18 597
5. Correct answers: A, B, C, D

You search for a customer exit by searching for the character string CUSTOMER-

FUNCTION or via the Repository Information System, Application Hierarchy, or

SAP Reference IMG.

6. Correct answers: A, C

BAdIs can have multiple implementations if the Multiple use checkbox is

selected. A BAdI can have multiple implementations, one for each filter value,

if the Filter-Depend. checkbox is selected.

7. Correct answer: B

The CALL BADI and GET BADI statements are used for new BAdI as of SAP Net-

Weaver 7.0.

8. Correct answer: A

Explicit enhancement points and sections are defined by the SAP application

programmer.

9. Correct answer: A

Code with an explicit enhancement section can be replaced by customer.

10. Correct answer: A

Code within an explicit enhancement point can be enhanced.

11. Correct answers: A, C, D

These answers are correct for the following reasons:

– Enhancement spots can contain one or more explicit enhancement points

and explicit enhancement sections.

– Enhancement spots cannot have explicit enhancement points, explicit sec-

tions, and new BAdIs together. They can have one or more explicit enhance-

ment points and explicit sections or one or more new BAdIs.

– Composite enhancement spots can have one or more enhancement spots or

composite enhancement spots.

12. Correct answers: A, B, C

These answers are correct for the following reasons:

– Implicit enhancement points are used to insert additional code with the SAP

program without modifying the application.

– Implicit enhancement options are used to enhance the interface parameters

for function modules and methods.

– Implicit enhancement points and options are available for SAP objects devel-

oped prior to SAP NetWeaver 7.0. Implicit enhancement points and options

Chapter 18 Enhancements and Modifications598
are always available to the customer and can be used to enhance SAP appli-

cations without modification.

13. Correct answer: A

Nested source code enhancements allow you to enhance the source code plug-

in, which means that you can now use the ENHANCEMENT-POINT and ENHANCE-

MENT-SECTION statements within the source code plug-in.

Takeaway

You should be able to explain various enhancement techniques such as user exits,

customer exits, business add-ins, and enhancement techniques in SAP NetWeaver

7.0. You should be able to explain the features of each of the above enhancement

techniques and be able to use them to enhance SAP applications.

You should know the tools used to implement customer exits such as program

exits, menu exits, and screen exits to insert your own functionality. You should

understand the difference between Transactions SMOD and CMOD. Similarly, you

should be able to create BAdI enhancements, both the classical BAdIs and new

BAdIs.

You should understand the tools and techniques to search various enhancements

for SAP applications. You should be able to use the Application Hierarchy with the

Repository Information System to search for customer exits, BAdIs, composite

enhancements, or enhancement spots for an application object.

Finally, you should be able to explain the difference between enhancement and

modification. You should know the tools to list the system modification in your

system and be able to use the SAP Notes Assistant to apply notes to the SAP sys-

tem.

Warning

You should try not to modify SAP objects unless it is absolutely required because

modification can cause problems during upgrade. You should try to adjust the SAP

objects by using one of the enhancement techniques and only modify the system

if SAP has not provided you with one of the enhancement options to adjust the

standard SAP objects.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Takeaway Chapter 18 599
Refresher

Table 18.1 shows the key concepts for enhancing SAP applications.

You should know the various enhancement techniques and the steps to imple-

ment enhancements. You should know the techniques and tools used to search

the SAP enhancement definition for a business application. You should also know

the difference between enhancement and modification. You should be aware of

the tools used to modify repository objects and the procedure to modify reposi-

tory objects. You should be familiar with the tools used to list the modified object

within the system, such as the Modification Browser. Finally, you should know

about SAP Notes Assistant, its use and benefits, and the ease with which it can be

used to implement notes in the system. This knowledge will allow you to easily

pass this topic on the certification examination.

Key Concept Definition

Enhancement con-

cepts

Enhancement techniques are used to insert additional customer-

specific functionality into SAP applications without modifying SAP

repository objects.

Enhancement search

tool

The Application Hierarchy tool (Transaction SE81) along with the

Repository Information System (Transaction SE85) can be used to

search for SAP enhancement definitions with the application com-

ponent.

Enhancement Infor-

mation System

The Enhancement Information System is a tool to search for

enhancement definitions and implementations in the SAP system.

SAP Notes Assistant The SAP Notes Assistant is the tool used to implement SAP notes in

the system.

Modification Browser The Modification Browser is used to list the repository object that

has been modified with the system. The tool can also be used to

reset the modification for the repository objects.

Enhancement

techniques

User exits, customer exits, classical business add-ins, and BTEs are

some of the enhancement techniques used prior to SAP NetWea-

ver 7.0 to enhance SAP applications without modifying SAP reposi-

tory objects.

Enhancement

Framework

As of SAP NetWeaver 7.0, new enhancement options such as

explicit enhancement points, explicit enhancement sections,

implicit enhancement points and options, and new BAdIs are avail-

able to enhance SAP applications.

Table 18.1 Key Concept Refresher

© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Chapter 19

Table Relationships

Techniques You’ll Master:

� Reference data elements

� Explore search help design

� Check table enforcement

� Understand text tables

Chapter 19 Table Relationships602
In this chapter you will be provided with a basic understanding of how tables

relate to other objects in the ABAP Dictionary. We will discuss data elements and

the capabilities they provide, cover the use of foreign keys for check tables and text

tables, and address value help design and the mechanisms for attaching a search

help to different ABAP Dictionary objects.

Each of these topics will be covered separately and will be followed by practice

questions and answers.

Real-World Scenario

Your project has a number of issues with restricting the contents of screen

fields to specific values. You need to identify why this is happening so you

can correct the issues.

You know that part of the problem is that team members are not sure what

data is actually available, but another problematic factor is simply that some

developers have not implemented value checks.

You will need to identify where help is needed in determining available val-

ues and where value checks need to be implemented. In both cases, you will

need to explain to other developers the options available and assist them in

implementing either the value check or the search help.

Objectives of this Portion of the Test

The purpose of this portion of the certification examination is to verify that you

have knowledge of the ABAP Dictionary and the relationships between different

tables, so it will test your knowledge of details related to data elements, including

how they can be used and their capabilities. The points that you will need to under-

stand from this section include the following:

� Enforcement of checks for screen fields

� The difference between a value table and a check table

� Different uses of foreign keys

� The use and design of search helps

The certification examination will give average weight to this chapter compared to

the other topics in the examination. This means there will be an average percent-

age of questions related to this chapter. Understanding table relationships makes
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 19 603
you a better developer. Although it is not necessary for all types of development

(being strongly related to Dynpros), it is nevertheless a necessary part of your

understanding in order to become certified.

Key Concepts Refresher

You need to understand and be able to perform the following types of tasks when

developing ABAP programs:

� Enforce field value checks during screen processing

� Link tables through foreign keys

� Implement search helps

Table Relationships

The ABAP Dictionary supports program development with a number of services:

� Value helps ((F4) help) for screen fields can be defined with search helps or by

assigning fixed values to domains.

� Screen fields can have field help ((F1) help) assigned by creating documentation

for the data element behind the screen field.

� An input check that ensures that the values entered are consistent is defined for

screen fields through the use of foreign keys.

� The ABAP Dictionary provides support for you to set and release locks. To do

this, you must create lock objects in the ABAP Dictionary. The function modules

to set and release locks are automatically generated when the lock object is acti-

vated. You can then use these function modules in the application program (see

Chapter 8 for details).

� Buffering settings can improve performance when accessing data in database

tables and views.

� You can enable the automatic recording of changes to table entries to a change

log.

Data elements provide a complete description of a field in the ABAP Dictionary or

an elementary data object in your ABAP applications. They provide the link

between domains and the data objects and contain semantic and technical infor-

mation about the data objects. The technical information typically comes from a

domain if one is defined. However, it is possible to define the technical attributes,

Chapter 19 Table Relationships604
such as type and length, directly within the data element. Defining the technical

attributes within the data element directly, instead of using a domain, prevents

the use of fixed values or value tables for the field that can only be defined at the

domain level, and therefore it is recommended that a domain be used.

You can (and should) maintain the field labels for data elements you create. These

field labels (short, medium, long, and heading) can be displayed later on screens or

selection screens to explain or describe the field’s purpose. On selection screens,

only the long version of the field label can be drawn from the ABAP Dictionary, but

when designing your own screens using the Screen Painter, you can choose. If you

are creating your own data element, you can (and again should) also add docu-

mentation to the data element. This documentation is automatically displayed

anytime a user presses the (F1) key with the cursor in a field that references the

data element. Standard fields also provide the ability to add supplemental docu-

mentation if the field is used uniquely for this customer’s system.

If the field value is provided in a search help list, the entry from the field label is

used for the title. These labels are also used in ALV displays (see Chapter 15) as

default headings for columns. You can specify a length for the respective field

label, although if it is left empty, the dictionary calculates the length based on

either predefined limits (10, 15, and 20) or the actual length if it is greater than the

predefined limit. This length determines the maximum length for the field label. If

you work for a global company, you can translate the field labels into other lan-

guages (Goto • Translation or Transaction SE63). When specifying the length,

remember that in another language, the same term in the field label might require

more letters.

A search help (value, or (F4), help) can be appended or attached to a data element.

In addition, search helps can be attached to other objects such as table fields, struc-

ture fields, or check tables. Figure 19.7, shown later in the chapter, offers some

details.

In different applications, you sometimes have to enter a particular value in several

screens, for example, a company code or customer number. To save the user hav-

ing to enter the same value over and over again, it is possible to assign a parameter

ID to the data element behind those screen fields (see Figure 19.1). If a screen field

is based on a data element with a parameter ID, the value that the user enters in

this field can be transferred to the parameter ID—that is, stored in memory—

when the screen is exited. If an input field based on the same data element exists

on a subsequent screen, this value can be read from the parameter and displayed
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 19 605
in the screen field automatically and can be changed by the user. The SET/GET

parameters hold the value per user session.

Figure 19.1 Parameter ID

After the user has logged off, these values are not retained. These parameters can

also have permanent values assigned through the user profile, so if a user only

deals with one company code, he would never need to actually type in the com-

pany code (in this case, the value is retained between sessions). To use a SET/GET

parameter for a field you created, you have to enter this in table TPARA; in other

words, you have to create the parameter memory ID.

The technical properties for the data element are maintained on the Data Type tab.

You should use mainly domains for technical typing, in other words, to give the

data element its technical characteristics. However, you can also define the data

element using the same integrated types that are used to define the domains. As a

special case, you can also create a data element as a reference type. The referenced

type is not restricted here to the type DATA ELEMENT. It can be any other reference

type or even a generic reference to ANY, OBJECT, or DATA.

Note

A reference of the type ANY can point to both objects and data. The definition as a

reference is the same as the type declaration in an ABAP program TYPES tr_dt
TYPE REF TO data.

Chapter 19 Table Relationships606
The domain describes the value range of a field by specifying its data type and field

length. If only a limited set of values is allowed, these can be defined as fixed val-

ues (see Figure 19.2 for an example).

Figure 19.2 Fixed Values

Specifying fixed values causes the value range of the domain to be restricted by

these values. Fixed values can be immediately used as check values in screen

entries and for value help. Fixed values can either be listed individually or defined

as an interval.

The value range of a field can also be defined by specifying a value table (see Figure

19.3) in the domain. Unlike fixed values, however, simply specifying a value table

does not cause the input of a screen field with this domain behind it to be checked,

and there is no value help.

Note

If you enter a value table for a domain, the system can make a proposal for the for-

eign key definition for any table fields with this domain behind them.

In the ABAP Dictionary, this type of relationship between two tables is called a for-

eign key relationship, and the tables must be defined explicitly for the field. For-

eign keys are used to ensure that the data is consistent. Data that has been entered

on a screen is checked against existing data in the check table to ensure that it is

consistent. This check does not prevent a program from directly updating the

database table with an incorrect value. The check is part of the screen processing,

not the database interface.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 19 607
Figure 19.3 Value Table

Note

A value table only becomes a check table when a foreign key is defined. If you have

a field based on a domain with a value table, but no foreign key was defined at the

field level, there is no check for the screen field.

A combination of fields in a table is called a foreign key if this field combination is

the primary key of another table. A foreign key links two tables. The check table is

the table whose key fields are checked. This table is also called the referenced table.

The example in Figure 19.4 shows the table VBRK (in abbreviated form) with a for-

eign key relationship to KNA1.

Let’s say an entry is to be written in the foreign key table. This entry must be con-

sistent with the key fields of the check table. In other words, the value you want to

insert must exist already in the check table. The field of the foreign key table to be

checked is called the check field. Continuing our current example, the client and

customer numbers are the check fields. Foreign keys can only be used in screens.

You are able to either insert or change data records in the database table without

this being checked using an ABAP program, in other words, if you do not go

Chapter 19 Table Relationships608
through screen validations. There is no way to automatically enforce this check in

a program. A program must implement the check table validation within the pro-

gram itself.

Figure 19.4 Check Table Example

When you are maintaining foreign keys, domain equality is mandatory for check

table enforcement. In other words, the same domain is required for the check field

and referenced key field of the check table so that you do not compare fields with

different data types or field lengths. Different data elements can be used, but they

must refer to the same domain. The requirement for domain equality is only nec-

essary for the check field. For all other foreign key fields, it is sufficient if the data

type and the field length are equal. You should always try for domain equality for

all development and not just for check tables because it always simplifies making

domain changes later. In this case, the foreign key will remain consistent if the

field length is changed because the corresponding fields are both changed. If the

domains are different, then the foreign key would be inconsistent (for example, if

the field lengths were changed). This domain equality also means that a check

table can only be used for fields that use a domain to obtain their technical attri-

butes.

Note

The system can automatically propose the check table for the check field if the

domain has a value table. In this case, a proposal is created for the field assign-

ment in the foreign key.

Foreign key table VBRK

MANDT VBELN Field 3

Check table KNA1

MANDT KUNNR Field …

Field … KUNAG Field 54 Field …

Foreign key fields

Primary key

Primary key
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 19 609
The cardinality describes the foreign key relationship with regard to the number of

possible dependent records (records of the foreign key table) and the referenced

records (records of the check table). The cardinality is always defined from the

point of view of the check table. The cardinality is defined as n:; the left side of the

cardinality describes the number of records of the foreign key table (VBRK in our

example), and the right side of the cardinality describes the number of records of

the check table (or KNA1).

� There are two values for the left side: either 1 or C. The 1 indicates that there

must be a match in the check table of one record, whereas C indicates that the

match does not need to exist in the check table.

� There are four values for the right side of the cardinality: 1, C, N, or CN. The 1 indi-

cates that there must be exactly one record in the foreign key table, C indicates

that there can be 0 or 1 records, N indicates 1 or more records, and CN indicates

that there can be any number of records.

The actual cardinality for our example is 1:CN, which indicates that every value in

VBRK must exist in KNA1 once, and a value in KNA1 can exist 0 or more times in VBRK.

The types of the foreign key fields describe what the foreign key fields in the for-

eign key table mean. The following types of foreign key fields can be defined:

� No key fields

The foreign key fields are not primary key fields of the foreign key table, and

they do not uniquely identify a record of the foreign key table. As a result, the

foreign key fields do not identify the foreign key table.

� Key fields

The foreign key fields are either primary key fields of the foreign key table or

they already uniquely identify a record of the foreign key table. The foreign key

fields therefore identify the foreign key table.

� Key fields of a text table

The foreign key table is a text table for the check table. This means the key of the

foreign key table differs from the key of the check table only in that it has an

additional language key field. This is a special case of the type key fields.

Note

Only one text table can be linked with a table.

Let’s use the flight tables SMEALT and SMEAL for our example. If you have two tables,

then SMEALT is a text table of SMEAL if both of the following are true:

Chapter 19 Table Relationships610
� The key of SMEALT comprises the entire key of SMEAL

� SMEALT has an additional language key field (field of data type LANG)

SMEALT can then contain text in several languages for each key entry of SMEAL.

To link the key entries with the text, the text table (SMEALT) must be linked with

SMEAL using a foreign key. Figure 19.5 shows an example of this foreign key. Key

fields of a text table must be selected here for the type of foreign key fields.

If table SMEAL is the check table of a field, the existing key entries of table SMEALT

will be displayed as possible input values when the value help ((F4)) is selected. The

explanatory text (contents of the first character-like non-key field of text table

SMEALT) is also displayed in the user’s logon language for each key value in table

SMEAL. Only one text table can be created for table SMEAL. The system checks this

when you attempt to activate a table with text foreign keys for table SMEAL.

Figure 19.5 Linking a Text Table

Value Help

Value help (input help or (F4) help) is a standard function of an SAP system. It dis-

plays the list of possible values for a screen field to the user. The user can select a

value from the list, which is then copied directly to the input field.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 19 611
The value help button is shown to the right of fields that have value help. (Figure

19.5 contains an example of this key on the Check table field.) The key appears

when the cursor is positioned within the screen field. The help can be started by

either clicking on this button for the screen element or pressing the function key

(F4).

It is often possible to further filter the list of possible entries shown through the

use of additional restrictions, depending on how the help was defined. The display

of the possible entries is enhanced with more useful information about the dis-

played values, such as the description. Given that the description of the value help

for a field is usually defined by its use, the value help for a field is typically defined

within the ABAP Dictionary. A search help definition contains the information the

system needs to satisfy the described requirements.

To define the search help, you need to specify where to get the data (from the selec-

tion method), what is passed to and from the search help (the search help inter-

face), and the behavior of the dialog. The search help interface dictates which

values already entered by the user are passed to the search help and what values

are copied back to the screen when a value is selected. The internal behavior of the

search help describes the selection method, determining which values are to be

displayed and the dialog behavior with the user.

A user can only access a search help through a screen, in other words, for one of the

input fields on that screen. Which search help is available is determined by the

search help attachment; search helps can be attached to table fields, structure

fields, data elements, or check tables. The editor for search helps enables you to

test the behavior of a search help without assigning it to a screen field.

A selection from the database at runtime determines the field’s possible values for

display. When you define a search help, you must define the database object from

which the data is selected. You do this by specifying a table or a view as the selec-

tion method.

If the data to be displayed to the user in the search help is contained in just one

table or in one table and its corresponding text table, you use the table as a selec-

tion method. If the data for the search help is located in multiple tables, it makes

sense to use a view as the selection method. The system will automatically ensure

that values are restricted to the user’s logon client and language.

If a view does not exist containing the information necessary for the value help,

you must first create one in the ABAP Dictionary. It is not possible to use mainte-

nance views as the selection method for search helps. Normally, a database view is

used, but within an SAP system these are always created with an inner join. The

Chapter 19 Table Relationships612
value help therefore only offers those values with an entry in each of the tables. If

you need to have the possible values determined with an outer join, you should

choose a help view as the selection method.

The possible values are presented in list format in the dialog box, from which the

user can select the required entry. If the possible values are formal keys, you

should provide further information in the display. For example, instead of a list of

customer numbers, the customer name should also be included.

If you expect a very large hit list, you should allow the user to define additional

restrictions for the attributes. Allowing these additional restrictions makes the set

of data displayed more focused and reduces the system load; in other words, you

reduce the amount of data that is fetched from the database by allowing the user

to restrict which entries he wants to see in the hit list. Additional conditions can be

entered in a dialog box for restricting values. You use the dialog type of a search

help to define whether the dialog box for restricting values is displayed before

determining the hit list.

You define which fields are to appear on either (or both) of the dialog boxes as

parameters in the search help. All fields of the selection method except the client

field and non-key fields of your text table can be used as parameters.

You define which parameter should appear in which dialog box and the order by

assigning the parameters positions in the two dialog boxes. You can use different

parameters or different orders in the two dialog boxes. The LPos column in Figure

19.6 identifies the order of the parameter in the hit list, and the SPos column iden-

tifies the position of the parameter in the dialog box for limiting the hit list.

Figure 19.6 Elementary Search Help
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Key Concepts Refresher Chapter 19 613
You must use data elements to type the search help parameters. If you don’t spec-

ify otherwise, the parameter uses the data element of the corresponding field of

the selection method, and normally this would be what you would use.

When defining a parameter of a search help, you also specify whether it is to copy

data from the screen to the value help (i.e., it acts as an IMPORT parameter) or if it

returns data from the value help (i.e., it acts as an EXPORT parameter). These IMPORT

and EXPORT parameters for a search help define the interface. After you have

defined the search help, you need to attach it to the relevant object—either to a

data element, a table or structure field, or a check table. The search help attach-

ment defines where the IMPORT parameters of the search help get their values and

to which screen fields to return the contents of the EXPORT parameters.

You do not normally define the semantic and technical attributes of a screen field

(type, length, (F1) help, etc.) directly when you define the screen and create the

input field. Instead, you reference an ABAP Dictionary field in the Screen Painter.

The screen field then takes on the attributes of this Dictionary field. Likewise, you

attach the search help to the ABAP Dictionary search field and not to the screen

field. In this way we get consistency: Wherever an input field is based upon an

ABAP Dictionary field, the same search help will be available for the user.

Note

Fields that lack a search help attachment can still have a value help because other

mechanisms are also used for the value help, for example, domain fixed values.

There are three mechanisms for attaching a search help to a field of the ABAP Dic-

tionary:

� You can attach a search help directly to a field of the structure or table.

� If the field has a check table, the contents of the check table are offered as possi-

ble values in the value help. The display contains the key fields of the check

table. If the check table has a text table, its first character-like non-key field is

also displayed. You can attach a search help to the check table. This search help

is used for all of the fields that have this table as a check table.

� You can attach a search help to a data element. This search help is then available

for all of the fields that use this data element.

If you attach a search help to a check table or a data element, you will obtain a high

degree of reusability.

Chapter 19 Table Relationships614
The SAP system uses a number of mechanisms to provide value help to as many

screen fields as possible, not just search helps. If more than one mechanism is

available for a field, the system uses the hierarchy shown in Figure 19.7 to deter-

mine which to present.

Figure 19.7 Value Help Mechanisms

It is also possible to define a value help for the screen field directly in the Screen

Painter. This, however, does not provide automatic reuse and therefore is not

encouraged. You can also program the value help yourself using the screen event

process on value (POV) request, but this can require a lot of programming effort.

Performance of a search help, as with SELECT statements, should always be a con-

cern. As a search help is selecting data from the database, it is sometimes neces-

sary to search large amounts of data. This can result in a long wait time for the user

and increase the load on the system. When defining a search help, as you do with a

SELECT, you should take measures to optimize the selection method. If you expect

Input help
from screen

Field search
help

Search help
for field

Check table
help

Data element
search help

Search help
for data element

Fixed valuesFixed values

Clock or
calendar help

Clock or
calendar help

Yes

Yes
Yes

Yes

Yes

No

No

No

Check table
search help

Search help
for check table

Check table
with text

table

Check table
with text table

Check table
key values

Key values
of check table

Yes

Yes

Yes

No

No

Process On
Value request

Process On
Value request

Search help for
screen field

Check of the
flow logic

Screen field
search help

Flow logic

Yes

Yes

Yes

No

No

No

Yes
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Practice Questions Chapter 19 615
a large number of entries, you should restrict the hit list with additional condi-

tions. This increases the clarity of the hit list and reduces the load on the system.

The additional conditions can be a result of the context or can be entered by the

user in a dialog box. Options used for optimizing a database SELECT can also be

used here. This includes buffering or secondary indexes.

Practice Questions

These practice questions will help you evaluate your understanding of the topic.

The questions shown are similar in nature to those found on the certification

examination. Although none of these questions will be found on the exam itself,

they allow you to review your knowledge of the subject. Select the correct answers

and then check the completeness of your answers in the following solution sec-

tion. Remember that on the exam you must select all correct answers and only

correct answers to receive credit for the question.

1. Value help can be supplied from which of the following? Select all that apply.

� A. Process On Value request

� B. Search help for a screen field

� C. Search help for table or structure fields

� D. Search help for a check table

� E. Search help from a text table

� F. Key values of a check table

� G. Search help for a data element

� H. Fixed values

2. In which circumstances is a table considered to be a text table? Select all that

apply.

� A. The entire key of this data table is included as the key to this table.

� B. This table has an additional language key field.

� C. This table only has one character-based data field.

� D. This table has a foreign key to the data table as a text table.

� E. The ABAP runtime system determines that the relationship exists.

Chapter 19 Table Relationships616
3. When must a foreign key have domain equality?

� A. Always

� B. Never

� C. For a check field

� D. For a text table

4. Where are fixed values for fields stored?

� A. Table

� B. Structure

� C. Field

� D. Data element

� E. Domain

5. Only one text table can be linked to a table.

� A. True

� B. False

6. What is the difference between a value table and a check table?

� A. No difference; they are the same thing.

� B. A value table is a check table after a foreign key is defined.

� C. A value table is defined in the domain, whereas a check table is defined in

the data element.

� D. A check table is defined in the domain, whereas a value table is defined in

the data element.

� E. A value table does not exist.

7. The order of fields for a transparent table in the database…

� A. Needs to match the ABAP Dictionary.

� B. Is created in the order of the ABAP Dictionary.

� C. Is allowed to be different than the ABAP Dictionary.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Practice Questions Chapter 19 617
8. Which must a search help do? Select all that apply.

� A. Use a table or a view for data selection

� B. Determine the values for selection by the user

� C. Have a dialog with the user

� D. Allow the user to select a response

� E. Be used from a screen

9. Where should the labels for fields be stored?

� A. Table

� B. Structure

� C. Field

� D. Data element

� E. Domain

10. Which type of view cannot be used in a search help?

� A. Database view

� B. Maintenance view

� C. Help view

11. Which type of view uses an inner join in a search help?

� A. Database view

� B. Maintenance view

� C. Help view

12. Where do you create online documentation ((F1) help) for fields on the

screen?

� A. Table

� B. Structure

� C. Field

� D. Data element

� E. Domain

Chapter 19 Table Relationships618
13. To generate the function modules for a lock object for a custom table

(ENQUEUE_<lock_object> and DEQUEUE_<lock_object>), which tool would

you use?

� A. General Table Maintenance Dialog (Transaction SE54)

� B. Reuse Library (Transaction SE83)

� C. Function Builder (Transaction SE37)

� D. ABAP Dictionary (Transaction SE11)

� E. Text Elements (Transaction SE32)

14. It is possible to use both buffering and secondary indexes to improve perfor-

mance of a search help.

� A. True

� B. False

15. Which screen in the ABAP Dictionary allows you to log data changes to the

table?

� A. Attributes tab

� B. Utilities • Settings

� C. Technical Settings

� D. Delivery and Maintenance tab

� E. Utilities • Database Object • Database Utility

Practice Question Answers and Explanations

1. Correct answers: All options

All of the answers are correct. Value help can be obtained from any of these

sources (and a couple more; see Figure 19.7 for the complete list).

2. Correct answers: A, B, D

It is necessary for the entire key of the data table plus the language key for the

table to be considered a text table. However, it is also necessary for the foreign

key link to be specified; otherwise, they are just two similar tables. It is not nec-

essary for there only to be one character-based field; there must be at least one.

As mentioned above, only the first one (after the key) is used for the text.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Practice Question Answers and Explanations Chapter 19 619
3. Correct answer: C

Domain equality can exist for other foreign keys, but it is only necessary for a

check table. In other cases, a like type and length is sufficient.

4. Correct answer: E

Fixed values are identified at the domain level in the ABAP Dictionary. You can

specify individual values or intervals.

5. Correct answer: A

You can only associate one text table to a data table. The system checks this

when you attempt to activate a table with text foreign keys for a data table.

6. Correct answer: B

Without the foreign key association, a value table will not perform the check

validation during screen processing, whereas it can provide help assistance.

7. Correct answer: C

Since release 3.0, SAP has allowed the fields to be a different order in the ABAP

Dictionary and the database table.

8. Correct answers: B, C, D, E

It is not necessary to use a table or a view (you can, but it is not the only way of

selecting data).

9. Correct answer: D

Labels are stored at the data element level.

10. Correct answer: B

The maintenance view is not designed for data selection, but rather for mainte-

nance of business-oriented views of data.

11. Correct answer: A

A database view uses an inner join for data selection. If you need an outer join,

you should use a help view.

12. Correct answer: D

Field documentation is created at the data element level.

13. Correct answer: D

The ABAP Dictionary automatically generates the function modules used to

lock or unlock records when you define the lock object.

14. Correct answer: A

It is possible to use both buffering and secondary indexes to improve perfor-

mance of a search help.

Chapter 19 Table Relationships620
15. Correct answer: C

Technical Settings allows you to track changes to a table. The option is just

below the option for buffering.

Takeaway

You will need to understand the relationship between database tables and both

text tables and check tables. You will need to understand the foreign key relation-

ship between the tables. You also need to be able to distinguish between different

mechanisms for value help and how they can be used on screens. As part of this,

you will need to understand the types of checks that a field may have enforced

from the ABAP Dictionary.

Refresher

You will need to understand how data checks can be enforced during screen pro-

cessing and how value help can be provided. Also important to know is the rela-

tionship between different areas of the ABAP Dictionary (domains and data

elements) and relationships between tables with the use of foreign keys. You will

need to understand how to specify a check table and a text table with foreign keys

and know how to enforce checks for screen fields, the different uses of foreign

keys, and the use and design of search helps.

Table 19.1 lists the key concepts for table relationships.

Tips

A number of the questions on this topic will not be part of the normal class mate-

rials. These questions will require you to understand the underlying process to

Key Concept Definition

Validation checks The use of either a check table or fixed values to provide valida-

tion during screen processing.

Foreign keys The use of foreign keys to link two tables together and provide

additional information or validation.

Search helps A means of providing value help to the user on a screen.

Table 19.1 Key Concepts Refresher
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Takeaway Chapter 19 621
produce the correct answer. As with the majority of the subjects covered in the cer-

tification examination, it is important to have as much practical experience with

this subject as possible. Although the majority of the concepts presented in this

chapter should be second nature, it is important that you understand the nuances

of foreign keys and search helps.

You should now be able to create foreign keys to provide check tables or text

tables. You should also be able to identify the different parts of a search help and

understand where the search help can be used as well as how to design one. These

skills will enable you to successfully pass this portion of the certification exam.

© 2018 by Rheinwerk Publishing Inc., Boston (MA)

623
 The Authors

Puneet Asthana is a UX and mobility architect and a recog-

nized expert in ABAP development; he has more than 18

years of development experience, and has been working for

SAP for more than 15 years. Apart from ABAP development,

he is also an expert in SAP Fiori, mobility, SAP Cloud Plat-

form, SAP Cloud Platform Integration, IDocs, ABAP on SAP

HANA development, ALE, EDI, workflow, and process inte-

gration. He has worked on a number of projects as an archi-

tect and technical lead and is currently working as a UX and

mobility architect for SAP S/4HANA 1610 implementations.

Puneet has excellent functional knowledge and has been involved in a broad range

of SAP solution implementations. He has extensive experience in integrating SAP

and non-SAP systems, leveraging SAP integration technologies including SAP PI

and SAP Cloud Platform Integration, to deliver an innovative technical solution.

Puneet has participated in solution review, customer escalation issues, and pre-

sales activity.

David Haslam is a recognized expert in ABAP development,

having worked for SAP for more than 23 years. David has led

or participated in more than seven full lifecycle implemen-

tations of SAP, which include several multiple-phase proj-

ects and four large development projects. He was awarded

the prestigious status of SAP Platinum Consultant in 2001,

and he enjoys helping others through workshops and white

papers, and sharing his knowledge and experience.

David is currently part of the Chief Customer Office and pro-

vides his expertise in custom development; helping customers improve both the

process and techniques of custom development.

He has shared his experience and knowledge, providing guidance with the follow-

ing SAP certification examinations: SAP Certified Development Associate—ABAP

The Authors624
with SAP NetWeaver 7.0, SAP Certified Development Professional—ABAP System

Integration—SAP NetWeaver 7.0, and SAP Certified Development Professional—

ABAP User Interfaces—SAP NetWeaver 7.0.
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

625
Index

A

ABAP

basic statement ... 266

data object .. 143

data type ... 142, 151, 166

data type,domain ... 339

definition .. 77, 255

event blocks .. 261

global declaration 256, 290

global definition ... 256

obsolete additions .. 256

procedural ... 256

processing block .. 258

processor ... 65

runtime environment 255, 261, 266,

544, 545

statement ... 266, 536

subroutine ... 269

syntax rules ... 266

text translation ... 256

type ... 313

type of program .. 256

ABAP application server 48, 61, 63, 66, 214

resource optimization 67

ABAP class .. 443

attribute ... 451

class events ... 463

constructor .. 460

create object ... 451

event .. 463

global class .. 445

local class ... 443

method .. 453

private ... 444

private instantiation 449

private section ... 447

protected .. 444

protected instantiation 449

protected section .. 448

public ... 444

public section ... 447

raise exception .. 459

ABAP class (Cont.)

read-only .. 452

returning .. 459

static method ... 462

ABAP Debugger 86, 110, 112

architecture .. 111

classic 112, 113, 115, 117

flow control ... 127

new 113, 115–117, 126, 133

process call .. 268

start methods ... 114

starting .. 111, 113, 115

stopping ... 115

switching .. 115

work areas/desktops 117

ABAP Dictionary 66, 92, 303, 359, 525,

602, 611

activate table definition 212

append structure .. 359

check table 602–604, 606, 607, 610, 611

create view .. 611

customizing include 359

data element ... 283, 486, 491, 525, 602, 603,

611, 613

data element, individual field 213

data type ... 142, 162

domain .. 213, 603

fixed value .. 604, 606

foreign key 602, 606–608, 610

input field .. 277

interface parameters 271

key concepts ... 345

overview ... 305

program development support 603

search help 602–604, 611

search helps .. 328

structure enhancement 359

table ... 345

text table ... 609, 612

tool ... 307

transparent table .. 212

value table 602, 604, 606, 608

value table to check table 607

Index626
ABAP Dictionary type 313

ACCP .. 313

CLNT .. 313

DATS .. 313

FLTP ... 313

predefined ... 158

ABAP Editor ... 91, 122, 127

configure settings ... 86

new ABAP Editor 75, 87, 89

open code .. 112

ABAP List Viewer � ALV

ABAP messaging channels (AMC) 54

ABAP Objects 111, 119, 256, 268, 274, 440

definition ... 443

reference .. 111

ABAP program

development tasks ... 253

ABAP push channels (APC) 55

ABAP Test Cockpit ... 81

ABAP Unit Browser .. 81

ABAP Workbench 76, 107, 510

change request creation 254

introductory statement 257

main screen ... 77

settings .. 86

tools ... 77, 91

Abstraction .. 442

Access mode .. 318

Alias .. 548

ALV .. 476

change layout .. 484

container 476–478, 480, 488, 496

currency ... 486

custom container ... 478

data sorting .. 484

display data table 481, 482, 490

display variant 482–484

event handling 476, 477, 486, 496

event registration 487, 488, 497

field catalog 481–485, 491, 498

field group ... 482

field label ... 604

filtering ... 482

full screen 476, 477, 481, 488

grid control 476, 478, 481

layout .. 482

object model 477, 493, 494

ALV (Cont.)

print output .. 482

sorting .. 482, 492

unit of measure ... 486

ALV Grid

sort data ... 481

ALV Grid Control

create instance .. 480

data order .. 484

ALV Object Model ... 488

American Standard Code for Information

Interchange � ASC

Append ... 184, 185, 206

Application layer 61, 219, 223, 255

ASC .. 350

ASCII ... 350

Assert .. 111, 123

Assertions .. 125

Assigning ... 190, 191

Associate certification ... 31

Associate examination

competency area ... 34

specifics ... 33

At exit-command .. 393

At selection-screen ... 432

on .. 433

on block .. 433

on help-request for .. 433

on radio button ... 433

on value-request ... 433

output ... 424

ATC Result Browser ... 81

Attribute .. 274, 453, 473

instance ... 478, 488, 537

static .. 275, 489, 537, 543

Authorization check 252, 279

Authorization object ... 280

B

Back-End Editor .. 87

BAdI ... 561, 578

definition ... 579

Filter-depend .. 578

implementation .. 584

menu enhancement 586

multiple use ... 578, 580
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Index 627
BAdI (Cont.)

new ... 589

screen enhancement 587

searching .. 580

BAPI .. 59

definition ... 318

Begin of block

title ... 427

with frame ... 427

Binary search ... 192, 203

Breakpoint 111, 119, 123, 125, 132, 260

types ... 124

BSP .. 52

BTE ... 561, 575

FIBF ... 577

process .. 577

process interface ... 575

publish and subscribe 575

search .. 578

Buffer ... 66

Buffering ... 603

Open SQL .. 219

type ... 324

Business Application Programming Interface

� BAPI

Business object ... 441

Business Process Platform 49

Business Server Pages � BSP

Business Transaction Event � BTE

Byte and character string processing 360

Byte type 350, 354, 356, 360, 362

C

Call method ... 460

Cardinality .. 609

Central instance ... 224

Certification

associate ... 31

professional ... 31

Certification exam

scoring .. 30

Certification level ... 30

advanced ... 32

Change and Transport System (CTS) 99

Change request 252, 254, 289

assign objects ... 255

project timeline ... 254

Change request (Cont.)

task .. 254, 289

Character type 151, 350, 354, 355, 357, 358,

360, 362

Check table example .. 608

Checkbox

define in program .. 420

Checkpoint .. 123, 125, 133

assertions ... 125

group ... 126

Class ... 440, 443, 473, 539

constructor .. 460

definition ... 444

friends .. 539, 540

inheriting from .. 541

public, private, and protected

components ... 448

visibility .. 447

Class Builder ... 91, 453

method definition .. 457

Class Identification ... 549

CLASS-DATA .. 150

Class-events ... 463

Class-methods .. 454

Client ... 58

Cluster table .. 343

Code execution ... 111, 127

information .. 127

Code page ... 361

Collect .. 188

Component

lifetime ... 512, 515

Composite enhancement spot 590

Constructor .. 542

instance ... 481, 542

static ... 538, 542

Constructor Expressions 548

Context mapping 516, 517, 524

Control Framework .. 478

Controller

component controller 515

configuration controller 515

context controller ... 512

custom controller ... 515

view controller ... 516

window controller .. 516

Conversion routine .. 342

Index628
Course

BC400 .. 38

BC401 .. 38

BC402 ... 38

BC405 ... 38

BC414 .. 38

BC425 .. 38

BC430 ... 38

NET310 ... 38

NW001 ... 38

TAW10 .. 38

TAW11E ... 38

TAW12 ... 38

Create object ... 473

Customer exit .. 561, 566

Customer-function .. 568

D

Data

binding ... 517

encapsulation .. 268

modeling ... 210, 211, 280

process large volume 172

retrieval ... 210, 211, 214

Data element 158, 303, 305, 306, 315, 345

create ... 316

default component name 318

field label ... 316

parameter ID .. 316

search help ... 316, 604

technical attribute ... 308

Data object .. 143, 166

classic .. 112

definition ... 145

fixed value ... 145

form...endform .. 160

internal table ... 171

literal ... 145

local ... 162

modifying 111, 115, 121

module...endmodule 160

offset .. 356–358

predefined ... 147

viewing 111, 115, 118–120, 122, 128

visibility .. 160

Data type 143, 144, 166, 305, 309

basic ... 305

complex ... 155, 305, 307

declare incomplete .. 154

define structure ... 156

elementary 142, 153, 158

generic ... 141, 143

global ... 158, 162, 166

LCHR .. 310

local .. 155, 166

LRAW ... 311

MESH ... 157

parameters ... 144

predefined .. 143, 309

QUAN .. 311

RAWSTRING .. 311

select-options ... 144

SSTRING ... 312

STRING .. 311

string ... 153

TIMS ... 312

types .. 144

VARC .. 312

XSTRING ... 153

Database access ... 418

Database interface 65–67, 74, 214, 216, 220

Database layer 58–60, 64, 210, 219, 223, 255

Database lock .. 68, 111, 224

Database update ... 210, 211

asynchronous .. 233

bundled 223, 225, 228, 229

inline update ... 225, 228

local ... 233

synchronous ... 233

update task .. 225, 230

Database view 220, 306, 337

Debugger .. 110

old vs. new ... 120

scripting ... 129

Software Layer Aware Debugging 129

step size .. 129

tool ... 118

Decimal mantissa ... 152

Declaration position .. 148

Deep structure 141, 166, 342

Delete ... 196

Delivery and maintenance 320, 326
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Index 629
Dequeue .. 333, 338

Desktop ... 126, 128

tool ... 117, 118

Dialog Message � Message

Dialog program .. 370

Dialog programming concept 371

Dialog screen ... 413

event .. 413

Dialog step 63, 68, 223, 228

Diff tool ... 119, 128

Dispatcher ... 64

Domain 303, 305, 308, 345, 603

data element .. 315, 605

equality ... 608

fixed values ... 613

format ... 309

output property 309, 313

value table ... 606

Down cast ... 545

Dynpro ... 281

E

Empty table key ... 176

Encapsulation ... 442

Enhancement ... 93

ABAP Dictionary ... 587

append structure .. 587

BAdI .. 578

BTE .. 575

concept ... 599

customer exit ... 566

Customizing include 588

explicit enhancement point 588, 589

implicit enhancement point 589

menu exit ... 574

option .. 589

screen exit .. 572

search tool ... 599

spot ... 590

technique ... 562, 599

user exit .. 562

Enhancement Framework 93, 560, 561,

588, 599

composite enhancement 590

enhancement option 589

enhancement point 589

Enhancement Framework (Cont.)

enhancement spot 93, 590

new BAdI .. 589

Enhancement Information System 75, 93,

107, 599

Enqueue ... 333, 338

Enterprise extension .. 50

Entity relationship model (ERM) 211

Event .. 463, 473

declaration and implementation 464

sender .. 463

Event block ... 252, 262, 290

at line-selection 265, 288

at selection-screen 262, 265, 286, 287

at user-command 266, 288

details .. 262

end-of-page .. 265, 286

end-of-selection 264, 286

get node ... 262, 264, 286

initialization .. 263, 286

load-of-program 262, 286

start-of-selection 262, 263, 286

top-of-page 265, 286, 288

Examination

Strategy ... 42

Examine

processing logic ... 111

result .. 111

source code 111, 115, 118–120, 122, 123,

127, 128

Exclusive lock ... 334

Exclusive mode 116, 117, 133

External mode 113, 115, 133

External view .. 235

F

Field .. 381

OK_CODE ... 283

Ref_field .. 485, 486

Ref_table ... 485, 486

File interface .. 361

open dataset ... 361

Fixed point arithmetic 152

Flat structure 141, 166, 342

type ... 155

Flow logic .. 281

Index630
Foreign key ... 322, 606

domain equality ... 608

field types .. 609

relationship cardinality 609

table ... 607

Fragment view 350, 354, 357, 358, 362

Free ... 199

Friendship � class

Front-End Editor ... 88

Full buffering .. 324

Function Builder ... 91

Function keys ... 395

Function module 270, 306

exits .. 568

messages .. 289

Functional method .. 535

Functional type .. 392

G

Gateway ... 64

Generic buffering .. 324

Global class ... 443, 445

public instantiation 449

Graphical Screen Painter 376

GUI

creating GUI status 395

creating GUI title .. 395

setting GUI status .. 398

setting GUI title ... 398

status .. 370, 391, 414

title ... 370

title design ... 391

H

Hashed table 174, 178, 182, 318, 319

internal ... 207

Help view ... 338, 343

Hexadecimal type ... 152

Hook methods ... 516

I

Identifying error ... 110, 111

Index ... 306, 324

Index table .. 174, 178

Inheritance 442, 492, 540, 546, 551

friend ... 540

semantic difference 546

tree ... 541

Initialization .. 423, 431

Inline declaration .. 148

Inner join .. 335

Input check ... 306, 603

in ABAP dialog ... 386

Insert .. 185

lines .. 186

lines in internal table 185

table ... 177

Instance .. 57

attribute ... 453

component .. 450

Integer type ... 151

Interface ... 546, 552

Internal table 170, 207, 270

access mode .. 177

append .. 174

append line to .. 184

append summarized lines 188

append/modify ... 191

assigning ... 190

at...endat .. 194

binary search ... 192

clear ... 198

collect .. 188

column .. 172

define ... 175

define hashed ... 182

define in program, syntax 180

define sorted/hashed 182

definition ... 171

delete adjacent duplicates 197

delete lines .. 196

empty table key ... 176

endloop .. 193

features .. 171

hashed .. 270

hashed table ... 174

header line .. 173

index access .. 175

initial size .. 181

insert lines ... 185

key access .. 175
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Index 631
Internal table (Cont.)

line type .. 173

loop .. 193

modify ... 195

modify lines .. 195

MOVE-CORRESPONDING statement 187

non-unique key .. 180

occurs .. 202

populate ... 174

process lines sequentially 193

read lines .. 189

read table ... 189

refresh ... 198

secondary key .. 176

sort .. 197

sorted table ... 174, 270

standard ... 270

standard key ... 173

standard table ... 174

table key ... 173

table row .. 172

table type ... 177, 318

transporting ... 190

uniqueness of key ... 175

user-defined key .. 173

with header line 181, 183

without header line 173

work area ... 173

Internet Communication Manager 52

Internet Transaction Server 52

IS NOT BOUND condition 480

J

Java Connector .. 53

Join .. 335

K

Kernel and administration services 58

Key ... 318

L

Layout

FlowLayout ... 520

GridLayout .. 522

Layout (Cont.)

MatrixLayout ... 521

RowLayout .. 521

Like .. 150

Line type ... 318

Literal

constant ... 146

numeric .. 145

string ... 146

Literals ... 145

Local class ... 443

Lock object 48, 210, 211, 224, 304, 306,

332, 603

Dequeue ... 603

dequeue 223, 225, 228, 233

Enqueue .. 603

enqueue ... 223, 225, 228

enqueue work process 68

function modules ... 333

local lock container 226

lock mode .. 334

maintain .. 225

Lock parameter

collect .. 226

mode ... 226, 227

scope ... 226, 228

wait ... 226, 228

Log data change ... 324

LUW ... 48, 210, 211, 229

commit 222, 224, 229, 232, 233

database 64, 67, 221–224

definition ... 221

implicit commit 222–224

lock database ... 234

place changes in dialog step 223

rollback 221, 222, 231, 232

SAP ... 67, 231

update module error 234

M

Maintenance ... 335

Maintenance view 306, 337, 343

Memory analysis ... 119

Menu exit ... 574

Menu item, activate/deactivate 392

Index632
Menu Painter ... 92

create GUI status .. 392

Meshes ... 157

Message .. 252, 259, 283

class ... 284

number ... 284

placeholder ... 284

server .. 58, 61–63, 68

type .. 284

Method .. 441, 453, 473, 546

changing .. 459

default ... 459

exporting ... 459

importing .. 459

instance ... 275, 537, 541

optional .. 459

static ... 537, 543

Model View Controller � MVC

Modification ... 591

Modification adjustment 562

Modification Assistant 591

Modification Browser .. 592

Modify .. 195, 221

Modify table .. 177

Modularization unit ... 252, 256, 267, 268, 290,

496, 536

function module 256, 258, 261, 268, 270,

274, 289, 536

method 256, 258, 261, 268, 274, 289, 536

subroutine 256, 258, 259, 261, 268, 269,

271, 274, 496, 536

Module .. 381

Module pool program, create 406

MOVE-CORRESPONDING statement 187

Multiple inheritance 541, 546, 552

MVC .. 509

application structure 510

controller ... 510

model .. 510

view .. 510

N

Narrowing cast � Down cast

Nested structure .. 166

type .. 156

Node cardinality .. 516

Non-cumulative lock ... 334

Non-Unicode system ... 351

Numeric literal ... 145

Numeric type .. 151

O

Object .. 451, 473

context menu .. 79

instantiation .. 275

Object Navigator ... 78, 79

Object-oriented programming 440

concept ... 441

On .. 381

Open SQL

buffering .. 219

read database records 215

SQL Parser ... 236

statements .. 220

Outer join ... 335

Overloading ... 542

P

Package ... 95

global_switch ... 97

interface .. 97

nesting ... 96

pakparam ... 97

visibility ... 96

Package Builder .. 95, 96

PAI .. 371, 373

Parameter 144, 150, 259, 268

as checkbox .. 419

changing 258, 261, 269, 271, 274, 535

default ... 419

input 258, 261, 269, 271, 274, 487, 613

memory ID .. 419

obligatory ... 418, 419

output 258, 261, 269, 271, 274, 535, 613

parameter ID ... 317, 419

pass by reference 259, 261, 269, 290

pass by value 259, 261, 269, 273, 275, 290

radiobutton group ... 419

returning 258, 274, 277, 535

table .. 258, 269, 271

value check ... 420
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Index 633
Parameters statement 418

PBO .. 371, 373

Personalization .. 561, 562

Physical lock .. 224

Plug ... 513, 514

POH ... 373, 414

Polymorphism ... 442, 544

Pooled table ... 343

POV ... 373, 414

Predefined function for internal table 200

Presentation layer 61, 222, 223, 255

user view ... 62

Primary index ... 324

Private attribute ... 452

Procedure

block ... 262

exception 258, 270, 272, 274, 546

parameter .. 258

Process After Input � PAI

Process Before Output � PBO

Process interface .. 577

Process On Help-Request � POH

Process On Value-Request � POV

Processing block 256, 258, 286, 290

dialog module .. 258, 614

event block .. 258, 261

procedure ... 258

Professional certification 31

Program attribute ... 351

Program context ... 223

Program exits ... 568

Program type .. 285

class .. 257, 274

executable ... 256, 282

function group 256, 257, 270, 272, 282

interface ... 257

module pool .. 256, 282

type group ... 257

Projection view 337, 341, 343

Public attribute .. 452

Q

Quality management ... 82

R

Radio button ... 420

Read lock ... 334

Read table 177, 189, 191, 193

Redefinition ... 541

Refactoring Assistant ... 541

Reference data type .. 343

Reference table ... 322

Reference type .. 158

REFRESH .. 198

Relational operator ... 360

Remote Function Call � RFC

Repository Browser 82, 107

create package .. 95

Repository Information System 75, 84, 107

custommize selection screen 85

Repository object 60, 69, 74, 82, 254, 255

create/edit .. 83

search ... 84

Reuse component 215, 267, 270, 510

Reuse Library ... 79

RFC ... 59, 222, 256

Root component ... 519

S

SAP application server 48, 223, 224

SAP applications

enhance .. 561

SAP Business ByDesign .. 49

SAP Business One ... 49

SAP Business Suite ... 49

SAP Certified ABAP Development

Associate ... 33

SAP Community Network (SCN) 39

SAP examination

Strategy ... 41

SAP GUI ... 59, 61, 64, 65

SAP HANA ... 61

as standard database 235

primary database .. 61

SQLScript .. 235

view .. 235

SAP Help Portal ... 39

SAP List Viewer � ALV

SAP Logon ... 62

Index634
SAP NetWeaver ... 49

server architecture .. 52

SAP NetWeaver Application Server 48, 351,

477, 510

ABAP 53, 56, 59, 61–64, 67

ABAP + Java .. 52, 56

Java .. 53, 56

SAP Notes Assistant ... 592

SAP Products .. 49

SAP S/4HANA .. 49

SAP Software Change Registration (SSCR) 591

SAP Web Application Server 50, 52

Screen 62, 271, 281, 405, 477

chain .. 381

container control 478, 481, 496

control ... 478, 481

define layout .. 375

design .. 372

Dynpro 64, 252, 277, 281, 478, 480, 496, 509

element attribute ... 376

endchain .. 381

endloop ... 381

exit .. 572

field .. 383

field help .. 387

function code ... 379

function type .. 392

loop .. 381

modal dialog box 252, 283

modify dynamically 405

module calls ... 379

on chain-input ... 384

on input .. 384

on request .. 384

process after input ... 371

process before output 371

processing ... 381

processor ... 65

show element list .. 378

start sequence .. 282

structure ... 405

type .. 375

value help .. 387

values .. 381

Screen flow logic ... 379, 380

at cursor-selection ... 384

at exit-command .. 385

Screen flow logic (Cont.)

F1 Help with dialog module 389

keywords .. 381

process after input ... 380

process before output 380

table control ... 401

Screen Painter ... 329, 370

create screen for dialog

programming ... 372

design screen layout 373

screen attribute definition 374

Search help 304, 306, 328, 343

append ... 329, 332

attach to data element 613

attach to field .. 613

attach to table field 321

attachment .. 611, 613

collective ... 329, 331

data element .. 317

dialog behavior 611, 612

elementary .. 329

interface .. 611, 613

parameter .. 329, 331

selection method 611, 614

value list .. 611, 612

Secondary index ... 218, 324

Secondary table key

hash/sorted key .. 176

Select 215, 216, 219, 220, 614

array fetch ... 217

field list ... 216

from clause ... 215

into clause ... 215–217

join column ... 220

join condition .. 220

join table .. 220

loop ... 215, 216

select clause .. 215

single ... 215

where clause 215, 216, 218

Selection method 329, 330

Selection screen 144, 150, 252, 277, 372,

416, 417, 420

as subscreen ... 429

begin of block ... 427

begin of line .. 428

call selection-screen 427
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

Index 635
Selection screen (Cont.)

code .. 278

design .. 417

end of block ... 428

end of line .. 428

formatting ... 427

high .. 421

low .. 421

memory ID .. 424

nesting level .. 431

no intervals ... 424

no-display .. 424

no-extension ... 423

obligatory .. 424

option .. 421

parameter 277, 416–418

processing .. 432

selection text .. 418

select-options 277, 416, 417

sign ... 421

skip ... 429

tab strip control .. 430

text element .. 418

uline ... 429

variant .. 427

SELECT-OPTIONS statement 420

Server .. 58

Session .. 62

Set handler ... 466

Shared lock ... 334

Shared memory .. 64

Singleton ... 538, 540

SLAD �Debugger, Software Layer Aware

Debugging

Sort key, specify dynamically 197

Sorted table 174, 178, 182, 318, 319

internal ... 207

Specialization .. 540, 546

SQL ... 210

access method .. 218

ADBC .. 214

buffering 66, 213, 214, 219, 255

CDS ... 237

key field 212, 213, 215, 218

Native SQL .. 66

native SQL ... 67, 214

Open SQL ... 66, 214, 255

optimize ... 218

SQL (Cont.)

process rows ... 221

secondary index 213, 218

SQL expressions ... 237

SQL parser .. 236

Standard table 174, 178, 319

internal ... 207

Static attribute .. 453

Static component .. 450

String .. 153

String literal ... 146

Structure 213, 216, 306, 308, 318

Syntactically forbidden 550

System .. 58

T

Table .. 160, 280, 306

buffering .. 324, 326

DBTABPRT ... 324

Field ... 320, 327

join .. 220

primary key ... 213

secondary key ... 213, 218

transparent ... 212

transparent vs structure type 213

Table control

attribute ... 401

programming ... 400

screen flow logic ... 401

structure ... 403

Table Control Wizard ... 401

Table expression .. 199

using table key ... 199

Table type 156, 177, 306, 318

key category ... 179

line type .. 177

Tag Browser .. 80

Target � Select

Technical platform ... 50, 51

Technical settings 323, 326

Test Repository Browser 80

Text field literal .. 146

Text symbol ... 146

Tool .. 118, 123

change how opened 128

in work areas .. 126

object history ... 120

Index636
Tool (Cont.)

service ... 119

Variable Fast Display 128

Transaction

CMOD .. 567

FIBF ... 577

SE51 ... 373

SE80 .. 82

SMOD .. 567

UCCHECK .. 350, 352

Transparent table 305, 320

attributes ... 213

deep structure .. 339

definition ... 213

Transport Organizer 99, 101, 107

Transport � Change request

Transporting ... 193

Type ... 150, 155

U

Understanding

Comprehension .. 40

Effective memory .. 39

Mnemonics .. 40

Testing ... 40

Unicode .. 266, 348

alignment 349, 354, 356, 358

byte order .. 356

character set ... 351

check ... 348, 350, 351

compliant .. 349

enforce check ... 349

fragment view .. 358, 359

program 256, 351, 352, 354, 355, 359

syntax .. 349, 350, 352

system .. 351, 352, 362

tool .. 350, 352

Up cast ... 543

Update module 67, 229, 232

code .. 232

programming rules 234

V1 .. 232, 234

V2 ... 232, 234

User exit ... 561, 564

view .. 565

V

Value .. 150

Value help ... 603, 610

Variable ... 148

inline declaration ... 148

STATICS keyword .. 149

View

container ... 520

context ... 513, 515, 524

controller 513, 515, 523, 524

define ... 335

layout ... 519, 520, 524

type .. 335

UI element 511, 517, 519, 520, 522, 524

Visibility section .. 542, 547

private 538, 539, 542, 543

protected ... 539, 543

public 538, 539, 543, 547

W

Warning message .. 386

Watchpoint ... 111, 123, 132

Web Application Builder 92

Web Dynpro .. 508

application .. 518

component ... 510, 514

component interface 511, 518

controller 511, 512, 514, 515

event handling 513, 517

Explorer ... 93

Text Browser ... 80

view ... 511, 513, 514

window .. 511, 514

WebDynpro ... 53, 62

Widening cast � Up cast

Work process 58, 63, 64, 223, 233

determine number of 67

register ... 64

Worklist .. 79

Write lock ... 334

X

XSTRING ... 153
© 2018 by Rheinwerk Publishing Inc., Boston (MA)

i

Service Pages

The following sections contain notes on how you can contact us.

Praise and Criticism

We hope that you enjoyed reading this book. If it met your expectations, please do recom-
mend it. If you think there is room for improvement, please get in touch with the editor of
the book: willj@rheinwerk-publishing.com. We welcome every suggestion for improvement
but, of course, also any praise!

You can also share your reading experience via Twitter, Facebook, or email.

Supplements

If there are supplements available (sample code, exercise materials, lists, and so on), they
will be provided in your online library and on the web catalog page for this book. You can
directly navigate to this page using the following link: www.sap-press.com/4605. Should
we learn about typos that alter the meaning or content errors, we will provide a list with
corrections there, too.

Technical Issues

If you experience technical issues with your e-book or e-book account at SAP
PRESS, please feel free to contact our reader service: support@rheinwerk-publishing.com.

About Us and Our Program

The website http://www.sap-press.com provides detailed and first-hand infor-
mation on our current publishing program. Here, you can also easily order all of our
books and e-books. Information on Rheinwerk Publishing Inc. and additional contact
options can also be found at http://www.sap-press.com.

mailto:willj%40rheinwerk-publishing.com?subject=
http://www.sap-press.com/4605
mailto:support%40rheinwerk-publishing.com?subject=
%20http://www.sap-press.com
http://www.sap-press.com
http://www.sap-press.com

ii

Legal Notes

This section contains the detailed and legally binding usage conditions for this e-book.

Copyright Note

This publication is protected by copyright in its entirety. All usage and exploitation rights
are reserved by the author and Rheinwerk Publishing; in particular the right of reproduc-
tion and the right of distribution, be it in printed or electronic form.

© 2018 by Rheinwerk Publishing, Inc., Boston (MA)

Your Rights as a User

You are entitled to use this e-book for personal purposes only. In particular, you may print
the e-book for personal use or copy it as long as you store this copy on a device that is solely
and personally used by yourself. You are not entitled to any other usage or exploitation.

In particular, it is not permitted to forward electronic or printed copies to third parties.
Furthermore, it is not permitted to distribute the e-book on the Internet, in intranets, or
in any other way or make it available to third parties. Any public exhibition, other publica-
tion, or any reproduction of the e-book beyond personal use are expressly prohibited. The
aforementioned does not only apply to the e-book in its entirety but also to parts thereof
(e.g., charts, pictures, tables, sections of text).

Copyright notes, brands, and other legal reservations as well as the digital watermark may
not be removed from the e-book.

Digital Watermark

This e-book copy contains a digital watermark, a signature that indicates which person
may use this copy. If you, dear reader, are not this person, you are violating the copyright.
So please refrain from using this e-book and inform us about this violation. A brief email
to info@rheinwerk-publishing.com is sufficient. Thank you!

mailto:info%40rheinwerk-publishing.com?subject=

iii

Trademarks

The common names, trade names, descriptions of goods, and so on used in this publication
may be trademarks without special identification and subject to legal regulations as such.

All of the screenshots and graphics reproduced in this book are subject to copyright
© SAP SE, Dietmar-Hopp-Allee 16, 69190 Walldorf, Germany. SAP, the SAP logo, ABAP,
Ariba, ASAP, Concur, Concur ExpenseIt, Concur TripIt, Duet, SAP Adaptive Server Enterprise,
SAP Advantage Database Server, SAP Afaria, SAP ArchiveLink, SAP Ariba, SAP Business
ByDesign, SAP Business Explorer, SAP BusinessObjects, SAP BusinessObjects Explorer,
SAP BusinessObjects Lumira, SAP BusinessObjects Roambi, SAP BusinessObjects Web
Intelligence, SAP Business One, SAP Business Workflow, SAP Crystal Reports, SAP Early-
Watch, SAP Exchange Media (SAP XM), SAP Fieldglass, SAP Fiori, SAP Global Trade Services
(SAP GTS), SAP GoingLive, SAP HANA, SAP HANA Vora, SAP Hybris, SAP Jam, SAP Max-
Attention, SAP MaxDB, SAP NetWeaver, SAP PartnerEdge, SAPPHIRE NOW, SAP Power-
Builder, SAP PowerDesigner, SAP R/2, SAP R/3, SAP Replication Server, SAP S/4HANA,
SAP SQL Anywhere, SAP Strategic Enterprise Management (SAP SEM), SAP SuccessFactors,
The Best-Run Businesses Run SAP, TwoGo are registered or unregistered trademarks of
SAP SE, Walldorf, Germany.

Limitation of Liability

Regardless of the care that has been taken in creating texts, figures, and programs, neither
the publisher nor the author, editor, or translator assume any legal responsibility or any
liability for possible errors and their consequences.

	Acknowledgments
	The Authors

	Preface
	Structure of This Book
	Glimpse into the Exam Structure
	Practice Questions

	PART I: General Introduction
	1 ABAP Development Certification Track: Overview
	Certification Exam Scoring Changes
	Certification Levels
	Advanced Certification Levels

	Becoming an SAP Certified ABAP Development Associate: Overview
	Associate Examination Specifics
	Competency Areas

	2 Courses and Experience
	Training Courses for ABAP
	Sources of Information
	Strategic Understanding
	SAP Examination Strategies
	General Examination Strategies

	PART II: Exam Preparation
	3 SAP NetWeaver: Overview
	Objectives of This Portion of the Test
	Key Concepts Refresher
	SAP Products in a Nutshell
	Product Evolution
	SAP NetWeaver Architecture
	Kernel and Administration Services
	Software-Oriented View
	User-Oriented View
	Structure of a Work Process

	Important Terminology
	Practice Questions
	Practice Question Answers and Explanations
	Takeaway
	Refresher
	Tips

	4 ABAP Workbench Usage
	Objectives of this Portion of the Test
	Key Concepts Refresher
	ABAP Workbench
	Repository Browser
	Repository Information System
	Workbench Settings
	ABAP Editor and Workbench Settings
	ABAP Workbench Tools in Detail
	Enhancement Information System
	Packages and Their Attributes
	Transport Organizer

	Practice Questions
	Practice Question Answers and Explanations
	Takeaway
	Refresher

	5 ABAP Debugger Program Usage
	Objectives of this Portion of the Test
	Key Concepts Refresher
	New and Classic Debugger
	New Debugger Tools and UI
	Assertions and Breakpoints
	New Debugger Customization and Settings

	Important Terminology
	Practice Questions
	Practice Question Answers and Explanations
	Takeaway
	Refresher
	Tips

	6 ABAP Types and Data Objects
	Objectives of This Portion of the Test
	Key Concepts Refresher
	ABAP Types and Data Objects
	ABAP Data Types
	Local Data Types
	Global Data Types
	Data Object Visibility

	Important Terminology
	Practice Questions
	Practice Question Answers and Explanations
	Takeaway
	Refresher

	7 Internal Table Definition and Use
	Objectives of this Portion of the Test
	Key Concepts Refresher
	Internal Table Definition and Use
	Defining ABAP Internal Tables
	Using ABAP Internal Tables

	Important Terminology
	Practice Questions
	Practice Question Answers and Explanations
	Takeaway
	Refresher

	8 SQL Statements Including Update Strategies
	Objectives of This Portion of the Test
	Key Concepts Refresher
	Data Modeling
	Data Retrieval
	Arrangement of SELECT and FROM Clauses
	Unions
	Performance of Database Access
	Logical Units of Work
	Enqueue and Dequeue
	Inline Updates
	Perform on Commit
	Update Modules
	Open SQL
	SQL Parser
	SQL Expressions
	SQL Expressions Expanded
	SQL Functions Expanded
	Access to CDS Entities

	Practice Questions
	Practice Question Answers and Explanations
	Takeaway
	Refresher
	Tips

	9 Basic ABAP Programs and Interface Creation
	Objectives of this Portion of the Test
	Key Concepts Refresher
	Organizing Development
	ABAP Programming Overview
	ABAP Event Blocks
	Basic ABAP Statements
	ABAP Subroutine
	ABAP Function Module
	ABAP Classes and Methods
	ABAP Selection Screen
	Authorization Checks
	ABAP Dynpros
	Dialog Messages

	Important Terminology
	Practice Questions
	Practice Question Answers and Explanations
	Takeaway
	Refresher
	Tips

	10 ABAP Dictionary
	Objectives of This Portion of the Test
	Key Concepts Refresher
	Overview
	Basic and Complex Data Types
	Transparent Tables
	Global Temporary Table
	Replacement Objects
	Search Helps
	Append Search Helps
	Lock Objects
	View Types and Maintenance

	Important Terminology
	Practice Questions
	Practice Question Answers and Explanations
	Takeaway
	Refresher

	11 Unicode
	Objectives of This Portion of the Test
	Key Concepts Refresher
	Unicode Compliance
	Unicode Tools

	Important Terminology
	Practice Questions
	Practice Question Answers and Explanations
	Takeaway
	Refresher
	Tips

	12 Classical Screens
	Objectives of this Portion of the Test
	Key Concepts Refresher
	Screen Design
	GUI Status and Title Design
	Table Control Programming

	Important Terminology
	Practice Questions
	Practice Question Answers and Explanations
	Takeaway
	Refresher

	13 Selection Screens
	Objectives of this Portion of the Test
	Key Concepts Refresher
	Selection Screens
	Selection Screen Design

	Important Terminology
	Practice Questions
	Practice Question Answers and Explanations
	Takeaway
	Refresher

	14 ABAP Object-Oriented Programming
	Objectives of this Portion of the Test
	Key Concepts Refresher
	Object-Oriented Programming Concepts
	ABAP Objects
	ABAP Class
	Objects
	Attributes
	Methods
	Events

	Practice Questions
	Practice Question Answers and Explanations
	Takeaway
	Refresher

	15 ALV Grid Control
	Objectives of this Portion of the Test
	Key Concepts Refresher
	Overview of ALV Programming
	ALV Grid Programming (CL_GUI_ALV_GRID)
	ALV Object Model

	Important Terminology
	Practice Questions
	Practice Question Answers and Explanations
	Takeaway
	Refresher
	Tips

	16 User Interfaces (Web Dynpro)
	Objectives of this Portion of the Test
	Key Concepts Refresher
	Web Dynpro Design
	Controllers
	Contexts
	Events
	Web Dynpro Application
	Graphical Elements

	Important Terminology
	Practice Questions
	Practice Question Answers and Explanations
	Takeaway
	Refresher
	Tips

	17 Class Identification Analysis and Design
	Objectives of This Portion of the Test
	Key Concepts Refresher
	Functional Methods
	Inheritance
	Interfaces
	Constructor Expressions
	Class Identification

	Important Terminology
	Practice Questions
	Practice Question Answers and Explanations
	Takeaway
	Refresher
	Tips

	18 Enhancements and Modifications
	Objectives of this Portion of the Test
	Key Concepts Refresher
	Enhancing SAP Applications
	Enhancement Techniques
	Enhancement Framework
	Modification

	Practice Questions
	Practice Question Answers and Explanations
	Takeaway
	Refresher

	19 Table Relationships
	Objectives of this Portion of the Test
	Key Concepts Refresher
	Table Relationships
	Value Help

	Practice Questions
	Practice Question Answers and Explanations
	Takeaway
	Refresher
	Tips

	The Authors
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (coated_FOGRA39_GCR_bas.icc)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (ISO Uncoated)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /DEU <FEFF005B004200610073006900650072007400200061007500660020002200670061006C0069006C0065006F005F00650062006F006F006B005F007600330022005D0020007A00750072002000450072007300740065006C006C0075006E0067002000650069006E00650072002000660069006E0061006C0065006E0020005000440046002D004400610074006500690020006600FC0072002000640065006E00200045002D0042006F006F006B002D0057006F0072006B0066006C006F0077002E0020005A00690065006C0020006900730074002000650073002C00200064006900650020004400610074006500690067007200F600DF00650020006D00F60067006C006900630068007300740020006B006C00650069006E0020007A0075002000680061006C00740065006E00200028006400750072006300680020005200470042002D0046006100720062006500200075006E0064002000420069006C0064006B006F006D007000720069006D0069006500720075006E00670029002C0020006400690065002000420069006C0064007100750061006C0069007400E40074002000610062006500720020006700750074002000650072006B0065006E006E0062006100720020007A0075002000680061006C00740065006E002E00200073005200470042002D004600610072006200700072006F00660069006C00200077006900720064002000650069006E00670065006200650074007400650074002E002000480079007000650072006C0069006E006B0073002000770065007200640065006E0020006700670066002E0020006D0069007400670065006E006F006D006D0065006E002E0020004B006F006D007000610074006900620069006C0069007400E400740020006100750066002000500044004600200031002E0036002000650072006800F600680074002E0020004B006F006D007000720069006D0069006500720075006E006700200061007500660020004F0062006A0065006B0074006500620065006E00650020004D006100780069006D0061006C002E0020004100750066006C00F600730075006E0067002000610075006600200034003500300020006400700069002E>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName <FEFF005B0048006F006800650020004100750066006C00F600730075006E0067005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks true
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [450 450]
 /PageSize [476.220 680.315]
>> setpagedevice

